26 research outputs found

    Double valve replacement for acute spontaneous left chordal rupture secondary to chronic aortic incompetence

    Get PDF
    A 54 years old male with undiagnosed chronic calcific degenerative aortic valve incompetence presented with acute left anterior chordae tendinae rupture resulting in severe left heart failure and cardiogenic shock. He was successfully treated with emergency double valve replacement using mechanical valves. The pathogenesis of acute rupture of the anterior chordae tendinae, without any evidence of infective endocarditis or ischemic heart disease seems to have been attrition of the subvalvular mitral apparatus by the chronic regurgitant jet of aortic incompetence with chronic volume overload. We review the literature with specific focus on the occurrence of this unusual event

    Quantitative Doppler assessment of valvular regurgitation.

    No full text

    bypass in adults

    No full text
    We examined the cerebral response to changing hematocrit during hypothermic cardiopulmonary bypass (CPB) in 18 adults. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and cerebral oxy gen delivery (CDO2) were determined using the nitrous oxide saturation technique. Measurements were obtained before CPB at 36 degrees C, and twice during 27 degrees C CPB: first with a hemoglobin (Hgb) of 6.2 +/- 1.2 g/dL and then with a Hgb of 85 +/- 1.2 g/dL. During hypothermia, appropriate reductions in CMRO2 were demonstrated, but hemodilution-associated increases in CBF offset the reduction in CBF seen with hypothermia. At 27 degrees C CPB, as the Hgb concentration was increased from 6.2 to 8.5 g/dL, CBF decreased. CDO2 and CMRO2 were no different whether the Hgb was 6.2 or 8.5 g/dL. In eight patients in whom the Hgb was less than 6 g/dL, CDO2 remained more than twice CMRO2. Implications: This study suggests that cerebral oxygen balance during cardiopulmonary bypass is well maintained at more pronounced levels of hemodilution than are typically practiced, because changes in cerebral blood flow compensate for changes in hemoglobin concentration

    Cerebral response to hemodilution during hypothermic cardiopulmonary bypass in adults.

    No full text
    We examined the cerebral response to changing hematocrit during hypothermic cardiopulmonary bypass (CPB) in 18 adults. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and cerebral oxygen delivery (CDO2) were determined using the nitrous oxide saturation technique. Measurements were obtained before CPB at 36 degrees C, and twice during 27 degrees C CPB: first with a hemoglobin (Hgb) of 6.2 +/- 1.2 g/dL and then with a Hgb of 8.5 +/- 1.2 g/dL. During hypothermia, appropriate reductions in CMRO2 were demonstrated, but hemodilution-associated increases in CBF offset the reduction in CBF seen with hypothermia. At 27 degrees C CPB, as the Hgb concentration was increased from 6.2 to 8.5 g/ dL, CBF decreased. CDO2 and CMRO2 were no different whether the Hgb was 6.2 or 8.5 g/dL. In eight patients in whom the Hgb was less than 6 g/dL, CDO2 remained more than twice CMRO2. IMPLICATIONS: This study suggests that cerebral oxygen balance during cardiopulmonary bypass is well maintained at more pronounced levels of hemodilution than are typically practiced, because changes in cerebral blood flow compensate for changes in hemoglobin concentration
    corecore