5 research outputs found

    Transcriptional co-activators YAP1-TAZ of Hippo signalling in doxorubicin-induced cardiomyopathy

    Get PDF
    Aims Hippo signalling is an evolutionarily conserved pathway that controls organ size by regulating apoptosis, cell proliferation, and stem cell self-renewal. Recently, the pathway has been shown to exert powerful growth regulatory activity in cardiomyocytes. However, the functional role of this stress-related and cell death-related pathway in the human heart and cardiomyocytes is not known. In this study, we investigated the role of the transcriptional co-activators of Hippo signalling, YAP and TAZ, in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in response to cardiotoxic agents and investigated the effects of modulating the pathway on cardiomyocyte function and survival. Methods and results RNA-sequencing analysis of human heart samples with doxorubicin-induced end-stage heart failure and healthy controls showed that YAP and ERBB2 (HER2) as upstream regulators of differentially expressed genes correlated with doxorubicin treatment. Thus, we tested the effects of doxorubicin on hiPSC-CMs in vitro. Using an automated high-content screen of 96 clinically relevant antineoplastic and cardiotherapeutic drugs, we showed that doxorubicin induced the highest activation of YAP/TAZ nuclear translocation in both hiPSC-CMs and control MCF7 breast cancer cells. The overexpression of YAP rescued doxorubicin-induced cell loss in hiPSC-CMs by inhibiting apoptosis and inducing proliferation. In contrast, silencing of YAP and TAZ by siRNAs resulted in elevated mitochondrial membrane potential loss in response to doxorubicin. hiPSC-CM calcium transients did not change in response to YAP/TAZ silencing. Conclusions Our results suggest that Hippo signalling is involved in clinical anthracycline-induced cardiomyopathy. Modelling with hiPSC-CMs in vitro showed similar responses to doxorubicin as adult cardiomyocytes and revealed a potential cardioprotective effect of YAP in doxorubicin-induced cardiotoxicity

    New modalities of 3D pluripotent stem cell-based assays in cardiovascular toxicity

    Get PDF
    The substantial progress of the human induced pluripotent stem cell (hiPSC) technologies over the last decade has provided us with new opportunities for cardiovascular drug discovery, regenerative medicine, and disease modeling. The combination of hiPSC with 3D culture techniques offers numerous advantages for generating and studying physiological and pathophysiological cardiac models. Cells grown in 3D can overcome many limitations of 2D cell cultures and animal models. Furthermore, it enables the investigation in an architecturally appropriate, complex cellular environment in vitro. Yet, generation and study of cardiac organoids-which may contain versatile cardiovascular cell types differentiated from hiPSC-remain a challenge. The large-scale and high-throughput applications require accurate and standardised models with highly automated processes in culturing, imaging and data collection. Besides the compound spatial structure of organoids, their biological processes also possess different temporal dynamics which require other methods and technologies to detect them. In this review, we summarise the possibilities and challenges of acquiring relevant information from 3D cardiovascular models. We focus on the opportunities during different time-scale processes in dynamic pharmacological experiments and discuss the putative steps toward one-size-fits-all assays
    corecore