4 research outputs found

    The role of cultivated versus wild seeds in the diet of European turtle doves (Streptopelia turtur) across European breeding and African wintering grounds

    Get PDF
    Agricultural intensification is a major driver in species declines, with changes in land use resulting in widespread alteration of resource availability. An increase in anthropogenic food resources, alongside decreasing natural resources, has resulted in species undergoing dietary changes that can have important ecological consequences, particularly for declining species. Here we use high-throughput sequencing to analyze the diet of the migrant European turtle dove (Streptopelia turtur), a species that has experienced significant population decline throughout its European range. We analyze the diet of this species on both breeding and wintering grounds to gain an understanding of resource use throughout the annual cycle and compare areas of more and less intensive agriculture in western and eastern Europe, respectively. We examine associations with body condition, spatiotemporal variation and the source of food (wild or cultivated). We identified 121 taxonomic units in the diet, with significant variation across sampling seasons, and very little overlap between the breeding and wintering seasons, as well as high levels of cultivated food resources in the diet of turtle doves in both breeding and wintering grounds, with the highest proportion of wild seeds in the diet occurring in birds caught in Hungary, where agricultural intensity was lowest. We detected no association between body condition and the consumption of cultivated food resources. We demonstrate the importance of wild resources in birds on the wintering grounds as they approach migration, where body condition increased as the season progressed, concurrent with an increased consumption of wild seeds. These findings indicate the importance of habitats rich in wild seeds and the need to consider food availability on the wintering grounds, as well as the breeding grounds in turtle dove conservation strategies

    Evidence for strain-specific virulence of Trichomonas gallinae in African columbiformes

    No full text
    Infection by parasites or pathogens can have marked physiological impacts on individuals. In birds, infection may affect moult and feather growth, which is an energetically demanding time in the annual cycle. Previous work has suggested a potential link between clinically visible Trichomonas gallinae infection and wing length in Turtle doves Streptopelia turtur arriving on breeding grounds. First, T. gallinae infection was characterised in 149 columbids from five species, sampled on Turtle dove wintering grounds in Senegal during the moulting period, testing whether infection by T. gallinae is linked to moult. T. gallinae prevalence was 100%, so rather than testing for differences between infected and uninfected birds, we tested for differences in moult progression between birds infected by different T. gallinae strains. Twelve strains of T. gallinae were characterised at the ITS1/5.8S/ITS2 region, of which six were newly identified within this study. In Turtle doves only, evidence for differences in wing length by strain was found, with birds infected by strain Tcl-1 having wings nearly 6 mm longer than those infected with strain GEO. No evidence was found for an effect of strain identity within species on moult progression, but comparisons between infected and uninfected birds should be further investigated in species where prevalence is lower

    Successful storage of Trichomonas gallinae on Whatman FTA cards following culture

    Get PDF
    Logistical constraints concerning parasite sample storage can hinder progress with the discovery of genetic variation on a global scale. New storage methods are being developed to address this, but require testing in order to understand how widely applicable these methods are. Whatman FTA cards have been tested previously under laboratory conditions for storing low-concentration Trichomonas gallinae isolates with the conclusion that they are not suitable, but have not been tested under field conditions. Here, we conducted a field-test, comparing FTA cards with storage in ethanol for T. gallinae samples collected and cultured from wild Columbiformes in Africa using standard field methods, before transportation to the UK. After 6 months storage, both methods resulted in an overall prevalence of 100% following PCR amplification (n=59), suggesting that FTA cards are suitable for estimation of T. gallinae prevalence. However, samples stored in ethanol produced more, and longer, sequences than those stored on FTA cards. These data suggest storage in ethanol is preferable for the acquisition of high quality genetic strain data, but that FTA cards can be used successfully to ascertain infection prevalence and identify parasite strains under field condition

    Assessing rates of parasite coinfection and spatiotemporal strain variation via metabarcoding: insights for the conservation of European Turtle Doves Streptopelia turtur

    No full text
    Understanding the frequency, spatiotemporal dynamics and impacts of parasite coinfections is fundamental to developing control measures and predicting disease impacts. The European turtle dove (Streptopelia turtur) is one of Europe’s most threatened bird species. High prevalence of infection by the protozoan parasite Trichomonas gallinae has previously been identified, but the role of this and other coinfecting parasites in turtle dove declines remains unclear. Using a high-throughput sequencing approach, we identified seven strains of T. gallinae, including two novel strains, from ITS1/5.8S/ITS2 ribosomal sequences in turtle doves on breeding and wintering grounds, with further intra-strain variation and four novel sub-types revealed by the iron-hydrogenase gene. High spatiotemporal turnover was observed in T. gallinae strain composition, and infection was prevalent in all populations (89–100%). Coinfection by multiple Trichomonas strains was rarer than expected (1% observed compared to 38.6% expected), suggesting either within-host competition, or high mortality of coinfected individuals. In contrast, coinfection by multiple haemosporidians was common (43%), as was coinfection by haemosporidians and T. gallinae (90%), with positive associations between strains of T. gallinae and Leucocytozoon suggesting a mechanism such as parasite-induced immune modulation. We found no evidence for negative associations between coinfections and host body condition. We suggest that longitudinal studies involving the recapture and investigation of infection status of individuals over their lifespan are crucial to understand the epidemiology of coinfections in natural populations
    corecore