4 research outputs found
Sodium nitroprusside has leishmanicidal activity independent of iNOS
Abstract: INTRODUCTION: Leishmaniasis is a zoonotic disease caused by protozoa of the genus Leishmania . Cutaneous leishmaniasis is the most common form, with millions of new cases worldwide each year. Treatments are ineffective due to the toxicity of existing drugs and the resistance acquired by certain strains of the parasite. METHODS: We evaluated the activity of sodium nitroprusside in macrophages infected with Leishmania (Leishmania) amazonensis . Phagocytic and microbicidal activity were evaluated by phagocytosis assay and promastigote recovery, respectively, while cytokine production and nitrite levels were determined by ELISA and by the Griess method. Levels of iNOS and 3-nitrotyrosine were measured by immunocytochemistry. RESULTS: Sodium nitroprusside exhibited in vitro antileishmanial activity at both concentrations tested, reducing the number of amastigotes and recovered promastigotes in macrophages infected with L. amazonensis . At 1.5”g/mL, sodium nitroprusside stimulated levels of TNF-α and nitric oxide, but not IFN-γ. The compound also increased levels of 3-nitrotyrosine, but not expression of iNOS, suggesting that the drug acts as an exogenous source of nitric oxide. CONCLUSIONS: Sodium nitroprusside enhances microbicidal activity in Leishmania -infected macrophages by boosting nitric oxide and 3-nitrotyrosine
Antileishmanial Activity and Inducible Nitric Oxide Synthase Activation by RuNO Complex
Parasites of the genus Leishmania are capable of inhibiting effector functions of macrophages. These parasites have developed the adaptive ability to escape host defenses; for example, they inactivate the NF-ÎșB complex and suppress iNOS expression in infected macrophages, which are responsible for the production of the major antileishmanial substance nitric oxide (NO), favoring then its replication and successful infection. Metal complexes with NO have been studied as potential compounds for the treatment of certain tropical diseases, such as ruthenium compounds, known to be exogenous NO donors. In the present work, the compound cis-[Ru(bpy)2SO3(NO)]PF6, or RuNO, showed leishmanicidal activity directly and indirectly on promastigote forms of Leishmania (Leishmania) amazonensis. In addition, treatment with RuNO increased NO production by reversing the depletion of NO caused by Leishmania. We also found increased expression of Akt, iNOS, and NF-ÎșB in infected and treated macrophages. These results demonstrated that RuNO was able to kill the parasite by NO release and modulate the transcriptional capacity of the cell