1 research outputs found

    Transparent Perfect Mirror

    Full text link
    A mirror that reflects light fully and yet is transparent appears paradoxical. Current so-called transparent or "one-way" mirrors are not perfectly reflective and thus can be distinguished from a standard mirror. Constructing a transparent "perfect" mirror has profound implications for security, privacy, and camouflage. However, such a hypothetical device cannot be implemented in a passive structure. We demonstrate here a transparent perfect mirror in a non-Hermitian configuration: an active optical cavity where a certain prelasing gain extinguishes Poynting's vector at the device entrance. At this threshold, all vestiges of the cavity's structural resonances are eliminated and the device presents spectrally flat unity-reflectivity, thus, becoming indistinguishable from a perfect mirror when probed optically across the gain bandwidth. Nevertheless, the device is rendered transparent by virtue of persisting amplified transmission resonances. We confirm these predictions in two photonic realizations: a compact integrated active waveguide and a macroscopic all-optical-fiber system.Comment: The paper is highlighted in Nature Photonics: http://www.nature.com/nphoton/journal/v11/n6/full/nphoton.2017.90.html The supplementary data is available in: http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.7b0005
    corecore