3 research outputs found

    Assessment of Endocrine and Gonadal Condition of Male Largemouth Bass from Lake Mead, Nevada

    Full text link
    Las Vegas Bay (LVB) of Lake Mead receives combined flows of tertiary treated wastewater effluent, urban runoff, and groundwater from the Las Vegas metropolitan area. This study examined the potential for endocrine disrupting effects of these anthropogenic inputs on male largemouth bass (Micropterus salmoides). Adult male bass were collected at two sites within Lake Mead: Overton Arm (OA, reference site), and Las Vegas Bay (LVB). Post-spawn fish were collected in July 2007 (n = 6-10 per site) and pre-spawn fish in March 2008 (n = 13 per site). Post-spawn fish were characterized by regressed testes whereas pre-spawn bass had full-grown gonads. Mean fish lengths and weights did not vary between sites or sampling times. Pre-spawn LVB males had lower plasma 11-ketotestosterone (KT), higher estradiol-17β (E2), higher E2/KT ratio, higher hepatosomatic index (ratio of liver to body weight), higher hematocrit values, and higher condition factor compared to OA males. However, no significant differences were evident in the gonadosomatic index (ratio of testes to body weight) of either pre-or post-spawn males from the two sites. In post-spawn males, no significant site-associated differences were detected for any of the parameters measured. Overall, these results suggest the existence of site-specific environmental influences on several indices of endocrine condition and health of pre-spawn male largemouth bass in Lake Mead, and are generally consistent with outcomes from previous studies that suggested the occurrence of altered endocrine and reproductive condition in male common carp from LVB

    Investigations of the Effects of Synthetic Chemicals on the Endocrine System of Common Carp in Lake Mead, Nevada and Arizona

    Get PDF
    Lake Mead is the largest reservoir by volume in the United States and was created by the construction of the 221-meter high Hoover Dam in 1935 at Black Canyon on the lower Colorado River between Nevada and Arizona (fig. 1). Inflows of water into the lake include three rivers, Colorado, Virgin, and Muddy; as well as Las Vegas Wash, which is now perennial because of discharges from municipal wastewater treatment plants (Covay and Leiker, 1998) and urban stormwater runoff. As the population within the Las Vegas Valley began to increase in the 1940s, the treated effluent volume also has increased and in 1993 it constituted about 96 percent of the annual discharge of Las Vegas Wash (Bevans and others, 1996). The mean flow of Las Vegas Wash into Las Vegas Bay from 1992 to 1998 was about 490,000 m3/d (Preissler and others, 1999) and in 2001 increased to 606,000 m3/d (U.S. Bureau of Reclamation, 2001). The nutrient concentration in most areas of the lake is low, but wastewater discharged into Las Vegas Bay has caused an increased level of nutrients and primary productivity (aquatic plant and algal production) in this area of the lake (LaBounty and Horn, 1997). A byproduct of this increase in productivity has been the establishment of an important recreational fishery in Las Vegas Bay. However, concentrations of chlorophyll a (a measure of algal biomass) have also increased (LaBounty and Horn, 1997). In the spring of 2001, parts of Lake Mead experienced massive algal blooms. In addition to nutrient loading by wastewater, the presence of numerous synthetic chemicals in water, bottom sediments, and in fish tissue also has been reported (Bevans and others, 1996). Synthetic chemicals discharging into Las Vegas Bay and Lake Mead (fig. 1) originate from several sources that include surplus residential-irrigation water runoff, stormwater runoff, subsurface inflow, and tertiary treated sewage effluent discharging from three sewage-treatment plants. Chemicals detected in Las Vegas Wash and Bay environments include polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (including DDT and DDE), and “emerging contaminants” such as fragrances/musks, flame retardants, triclosan and its breakdown products, personal care products, and pharmaceuticals (Bevans and others, 1996; Boyd and Furlong, 2002; Goodbred and others, 2007). Many of these compounds are able to interact with the endocrine system of animals and potentially cause reproductive impacts. The National Park Service (NPS) manages Lake Mead National Recreation Area (LMNRA) with about 8 million yearly visitors including 500,000 anglers drawn to its world-class recreational fishery. The U.S. Fish and Wildlife Service (FWS) provides management for the federally designated, endangered razorback sucker (Xyrauchen texanus) and for more than 180 species of migratory birds that utilize LMNRA surface waters. These multiple uses of surface water in the area demonstrate their vital importance to the LMNRA as well as the need to maintain the quality of water at levels that are adequate for these uses
    corecore