74 research outputs found

    Explosive Formation and Dynamics of Vapor Nanobubbles around a Continuously Heated Gold Nanosphere

    Get PDF
    We form sub-micrometer-sized vapor bubbles around a single laser heating gold nanoparticle in a liquid and monitor them through optical scattering of a probe laser. The fast, inertia-governed expansion is followed by a slower contraction and disappearance after some tens of nanoseconds. In a narrow range of illumination powers, bubble time traces show a clear echo signature. We attribute it to sound waves released upon the initial explosion and reflected by flat interfaces, hundreds of microns away from the particle. Echoes can trigger new explosions. A steady state of nanobubble with a vapor shell surrounding the heated nanoparticle can be reached by a proper time profile of the heating intensity. Stable nanobubbles could have original applications for light modulation and for enhanced optical-acoustic coupling in photoacoustic microscopy

    Optical tracing of multiple charges in single-electron devices

    Get PDF
    Single molecules that exhibit narrow optical transitions at cryogenic temperatures can be used as local electric-field sensors. We derive the single charge sensitivity of aromatic organic dye molecules, based on first principles. Through numerical modeling, we demonstrate that by using currently available technologies it is possible to optically detect charging events in a granular network with a sensitivity better than 10−5e/Hz10^{-5}e/\sqrt{\textrm{Hz}} and track positions of multiple electrons, simultaneously, with nanometer spatial resolution. Our results pave the way for minimally-invasive optical inspection of electronic and spintronic nanodevices and building hybrid optoelectronic interfaces that function at both single-photon and single-electron levels.Comment: 7 pages, submitted to Physical Revie

    Temperature Cycles Unravel the Dynamics of Single Biomolecules

    Get PDF

    A Common-Path Interferometer for Time-Resolved and Shot-Noise-Limited Detection of Single Nanoparticles

    Get PDF
    We give a detailed description of a novel method for time-resolved experiments on single non-luminescent nanoparticles. The method is based on the combination of pump-probe spectroscopy and a common-path interferometer. In our interferometer, probe and reference arms are separated in time and polarization by a birefringent crystal. The interferometer, fully described by an analytical model, allows us to separately detect the real and imaginary contributions to the signal. We demonstrate the possibilities of the setup by time-resolved detection of single gold nanoparticles as small as 10 nm in diameter, and of acoustic oscillations of particles larger than 40 nm in diameter

    Explosive, oscillatory, and Leidenfrost boiling at the nanoscale

    Get PDF
    We investigate the different boiling r\'egimes around a single continuously laser-heated 80 nm gold nanoparticle and draw parallels to the classical picture of boiling. Initially, nanoscale boiling takes the form of transient, inertia-driven, unsustainable boiling events characteristic of a nanoscale boiling crisis. At higher heating power, nanoscale boiling is continuous, with a vapor film being sustained during heating for at least up to 20 Ό\mus. Only at high heating powers does a substantial stable vapour nanobubble form. At intermediate heating powers, unstable boiling sometimes takes the form of remarkably stable nanobubble oscillations with frequencies between 40 MHz and 60 MHz; frequencies that are consistent with the relevant size scales according to the Rayleigh-Plesset model of bubble oscillation, though how applicable that model is to plasmonic vapor nanobubbles is not clear

    Design and synthesis of aromatic molecules for probing electric-fields at the nanoscale

    Get PDF
    We propose using halogenated organic dyes as nanoprobes for electric field and show their greatly enhanced Stark coefficients using density functional theory (DFT) calculations. We analyse halogenated variants of three molecules that have been of interest for cryogenic single molecule spectroscopy, perylene, terrylene, and dibenzoterrylene, with the zero-phonon optical transitions at blue, red, and near infrared. Out of all the combinations of halides and binding sites that are calculated, we have found that fluorination of the optimum binding site induces a dipole difference between ground and excited states larger than 0.5 D for all three molecules with the highest value of 0.69 D for fluoroperylene. We also report on synthesis of 3-fluoroterrylene and bulk spectroscopy of this compound in liquid and solid organic environments.Comment: Article presented in Faraday Discussions on September 201

    Simple model for the power-law blinking of single semiconductor nanocrystals

    Get PDF
    We assign the blinking of nanocrystals to electron tunneling towards a uniform spatial distribution of traps. This naturally explains the power-law distribution of off times, and the power-law correlation function we measured on uncapped CdS dots. Capped dots, on the other hand, present extended on times leading to a radically different correlation function. This is readily described in our model by involving two different, dark and bright, charged states. Coulomb blockade prevents further ionization of the charged dot, thus giving rise to long, power-law distributed off and on times

    Single Molecule as a Local Acoustic Detector for Mechanical Oscillators

    Get PDF
    Biological and Soft Matter Physic
    • 

    corecore