262 research outputs found

    The Nobel Prize in Chemistry 2015: Exciting Discoveries in DNA Repair by Aziz Sancar

    Get PDF
    On October 7, 2015, the Nobel Prize in Chemistry for 2015 was awarded to three deserving scientists for their pioneering research on DNA repair. Tomas Lindahl was recognized for studies that uncovered the inherent instability of DNA as well as the mechanism of the base excision repair pathway, Paul Modrich for characterization of the mismatch repair pathway, and Aziz Sancar for mechanistic elucidation of the nucleotide excision repair (NER) pathway. For me, the announcement of these awards in my area of research was extremely gratifying, particularly so because Aziz was my mentor during my Ph.D. studies that examined the steps of prokaryotic NER. Memorably, I trained in the Sancar labor- atory at a time where groundbreaking discoveries were being made in the burgeoning field of DNA repair, and can personally attest to his dedication and keen intellect. The text below primarily addresses Aziz’s critical contributions towards our understanding of NER processes in E. coli during the early years of study on this pathway. Other researchers have made important contributions in this area that may not be specified or cited here due to emphasis and space constraints of this article

    Length-dependent degradation of single-stranded 3' ends by the Werner syndrome protein (WRN): implications for spatial orientation and coordinated 3' to 5' movement of its ATPase/helicase and exonuclease domains

    Get PDF
    BACKGROUND: The cancer-prone and accelerated aging disease Werner syndrome is caused by loss of function of the WRN gene product that possesses ATPase, 3' to 5' helicase and 3' to 5' exonuclease activities. Although WRN has been most prominently suggested to function in telomere maintenance, resolution of replication blockage and/or recombinational repair, its exact role in DNA metabolism remains unclear. WRN is the only human RecQ family member to possess both helicase and exonuclease activity, but the mechanistic relationship between these activities is unknown. In this study, model single-stranded and 3' overhang DNA substrates of varying length and structure were used to examine potential coordination between the ATPase/helicase and exonuclease activities of WRN. RESULTS: Our results show that WRN can not only bind to but also catalyze the 3' to 5' degradation of single-stranded and 3' overhang DNA substrates, structures that were previously thought to be refractory to WRN exonuclease activity. The length of the single-stranded regions in these structures is a critical parameter in determining both the binding affinity and the level of exonuclease activity of WRN. Most importantly, specific nucleotide cofactors dramatically stimulate WRN exonuclease activity on these substrates, with conditions that permit ATP hydrolysis not only resulting in enhanced exonuclease activity but also altering its length dependence on these structures. Parallel experiments show that a deletion mutant containing only the WRN exonuclease domain lacks both this DNA length and nucleotide cofactor dependence, demonstrating that the interaction of the ATPase/helicase domain of WRN with the DNA substrate has a profound influence on exonuclease activity. CONCLUSION: Our results indicate that, under conditions that permit ATP hydrolysis, there is a dynamic and cooperative relationship between the distinct ATPase/helicase and exonuclease domains of WRN with regard to their orientation on DNA. Based on these results, models are proposed for the coordinated, unidirectional 3' to 5' movement of the helicase and exonuclease domains of WRN on DNA that should be informative for elucidating its function in genome maintenance

    Strand Exchange of Telomeric DNA Catalyzed by the Werner Syndrome Protein (WRN) is Specifically Stimulated by TRF2

    Get PDF
    Werner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underlie early onset of aging phenotypes in WS. Furthermore, TRF2, a protein essential for telomere protection, interacts with WRN and influences its basic helicase and exonuclease activities. However, these studies provided little insight into WRN\u27s specific function at telomeres. Here, we explored the possibility that WRN and TRF2 cooperate during telomeric recombination processes. Our results indicate that TRF2, through its interactions with both WRN and telomeric DNA, stimulates WRN-mediated strand exchange specifically between telomeric substrates; TRF2\u27s basic domain is particularly important for this stimulation. Although TRF1 binds telomeric DNA with similar affinity, it has minimal effects on WRN-mediated strand exchange of telomeric DNA. Moreover, TRF2 is displaced from telomeric DNA by WRN, independent of its ATPase and helicase activities. Together, these results suggest that TRF2 and WRN act coordinately during telomeric recombination processes, consistent with certain telomeric abnormalities associated with alteration of WRN function

    Intramolecular Telomeric G-Quadruplexes Dramatically Inhibit DNA Synthesis by Replicative and Translesion Polymerases, Revealing their Potential to Lead to Genetic Change

    Get PDF
    Recent research indicates that hundreds of thousands of G-rich sequences within the human genome have the potential to form secondary structures known as G-quadruplexes. Telomeric regions, consisting of long arrays of TTAGGG/AATCCC repeats, are among the most likely areas in which these structures might form. Since G-quadruplexes assemble from certain G-rich single-stranded sequences, they might arise when duplex DNA is unwound such as during replication. Coincidentally, these bulky structures when present in the DNA template might also hinder the action of DNA polymerases. In this study, single-stranded telomeric templates with the potential to form G-quadruplexes were examined for their effects on a variety of replicative and translesion DNA polymerases from humans and lower organisms. Our results demonstrate that single-stranded templates containing four telomeric GGG runs fold into intramolecular G-quadruplex structures. These intramolecular G quadruplexes are somewhat dynamic in nature and stabilized by increasing KCl concentrations and decreasing temperatures. Furthermore, the presence of these intramolecular G-quadruplexes in the template dramatically inhibits DNA synthesis by various DNA polymerases, including the human polymerase δ employed during lagging strand replication of G-rich telomeric strands and several human translesion DNA polymerases potentially recruited to sites of replication blockage. Notably, misincorporation of nucleotides is observed when certain translesion polymerases are employed on substrates containing intramolecular G-quadruplexes, as is extension of the resulting mismatched base pairs upon dynamic unfolding of this secondary structure. These findings reveal the potential for blockage of DNA replication and genetic changes related to sequences capable of forming intramolecular G-quadruplexes

    Geothermal probabilistic cost study

    Get PDF
    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined

    Competition between the DNA unwinding and strand pairing activities of the Werner and Bloom syndrome proteins

    Get PDF
    BACKGROUND: The premature aging and cancer-prone Werner and Bloom syndromes are caused by defects in the RecQ helicase enzymes WRN and BLM, respectively. Recently, both WRN and BLM (as well as several other RecQ members) have been shown to possess a strand annealing activity in addition to the requisite DNA unwinding activity. Since an annealing function would appear to directly oppose the action of a helicase, we have examined in this study the dynamic equilibrium between unwinding and annealing mediated by either WRN or BLM. RESULTS: Our investigation into the competition between annealing and unwinding demonstrates that, under standard reaction conditions, WRN- or BLM-mediated annealing can partially or completely mask unwinding as measured in standard helicase assays. Several strategies were employed to suppress the annealing activity so that the actual strength of WRN- or BLM-dependent unwinding could be more accurately assessed. Interestingly, if a DNA oligomer complementary to one strand of the DNA substrate to be unwound is added during the helicase reaction, both WRN and BLM unwinding is enhanced, presumably by preventing protein-mediated re-annealing. This strategy allowed measurement of WRN-catalyzed unwinding of long (80 base pair) duplex regions and fully complementary, blunt-ended duplexes, both of which were otherwise quite refractory to the helicase activity of WRN. Similarly, the addition of trap strand stimulated the ability of BLM to unwind long and blunt-ended duplexes. The stimulatory effect of the human replication protein A (hRPA, the eukaryotic single-stranded DNA binding protein) on both WRN- and BLM-dependent unwinding was also re-examined in light of its possible role in preventing re-annealing. Our results show that hRPA influences the outcome of WRN and BLM helicase assays by both inhibiting re-annealing and directly promoting unwinding, with the larger contribution from the latter mechanism. CONCLUSION: These findings indicate that measurements of unwinding by WRN, BLM, and probably other RecQ helicases are complicated by their annealing properties. Thus, WRN- and BLM-dependent unwinding activities are significantly stronger than previously believed. Since this broadens the range of potential physiological substrates for WRN and BLM, our findings have relevance for understanding their functions in vitro and in vivo

    Replication fork regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity

    Get PDF
    The premature aging and cancer-prone disease Werner syndrome stems from loss of WRN protein function. WRN deficiency causes replication abnormalities, sensitivity to certain genotoxic agents, genomic instability and early replicative senescence in primary fibroblasts. As a RecQ helicase family member, WRN is a DNA-dependent ATPase and unwinding enzyme, but also possesses strand annealing and exonuclease activities. RecQ helicases are postulated to participate in pathways responding to replication blockage, pathways possibly initiated by fork regression. In this study, a series of model replication fork substrates were used to examine the fork regression capability of WRN. Our results demonstrate that WRN catalyzes fork regression and Holliday junction formation. This process is an ATP-dependent reaction that is particularly efficient on forks containing single-stranded gaps of at least 11–13 nt on the leading arm at the fork junction. Importantly, WRN exonuclease activity, by digesting the leading daughter strand, enhances regression of forks with smaller gaps on the leading arm, thus creating an optimal structure for regression. Our results suggest that the multiple activities of WRN cooperate to promote replication fork regression. These findings, along with the established cellular consequences of WRN deficiency, strongly support a role for WRN in regression of blocked replication forks

    Replication Fork Regression \u3cem\u3eIn Vitro\u3c/em\u3e by the Werner Syndrome Protein (WRN): Holliday Junction Formation, the Effect of Leading Arm Structure and a Potential Role for WRN Exonuclease Activity

    Get PDF
    The premature aging and cancer-prone disease Werner syndrome stems from loss of WRN protein function. WRN deficiency causes replication abnormalities, sensitivity to certain genotoxic agents, genomic instability and early replicative senescence in primary fibroblasts. As a RecQ helicase family member, WRN is a DNA-dependent ATPase and unwinding enzyme, but also possesses strand annealing and exonuclease activities. RecQ helicases are postulated to participate in pathways responding to replication blockage, pathways possibly initiated by fork regression. In this study, a series of model replication fork substrates were used to examine the fork regression capability of WRN. Our results demonstrate that WRN catalyzes fork regression and Holliday junction formation. This process is an ATP-dependent reaction that is particularly efficient on forks containing single-stranded gaps of at least 11–13 nt on the leading arm at the fork junction. Importantly, WRN exonuclease activity, by digesting the leading daughter strand, enhances regression of forks with smaller gaps on the leading arm, thus creating an optimal structure for regression. Our results suggest that the multiple activities of WRN cooperate to promote replication fork regression. These findings, along with the established cellular consequences of WRN deficiency, strongly support a role for WRN in regression of blocked replication forks

    The DNA Structure and Sequence Preferences of WRN Underlie Its Function in Telomeric Recombination Events

    Get PDF
    Telomeric abnormalities caused by loss of function of the RecQ helicase WRN are linked to the multiple premature ageing phenotypes that characterize Werner syndrome. Here we examine WRN\u27s role in telomeric maintenance, by comparing its action on a variety of DNA structures without or with telomeric sequences. Our results show that WRN clearly prefers to act on strand invasion intermediates in a manner that favours strand invasion and exchange. Moreover, WRN unwinding of these recombination structures is further enhanced when the invading strand contains at least three G-rich single-stranded telomeric repeats. These selectivities are most pronounced at NaCl concentrations within the reported intranuclear monovalent cation concentration range, and are partly conferred by WRN\u27s C-terminal region. Importantly, WRN\u27s specificity for the G-rich telomeric sequence within this precise structural context is particularly relevant to telomere metabolism and strongly suggests a physiological role in telomeric recombination processes, including T-loop dynamics

    Acetylation of WRN Protein Regulates Its Stability by Inhibiting Ubiquitination

    Get PDF
    Background: WRN is a multi-functional protein involving DNA replication, recombination and repair. WRN acetylation has been demonstrated playing an important role in response to DNA damage. We previously found that WRN acetylation can regulate its enzymatic activities and nuclear distribution. Methodology/Principal Finding: Here, we investigated the factors involved in WRN acetylation and found that CBP and p300 are the only major acetyltransferases for WRN acetylation. We further identified 6 lysine residues in WRN that are subject to acetylation. Interestingly, WRN acetylation can increase its protein stability. SIRT1-mediated deacetylation of WRN reverses this effect. CBP dramatically increases the half-life of wild type WRN, while mutation of these 6 lysine residues (WRN-6KR) abrogates this increase. We further found that WRN stability is regulated by the ubiquitination pathway and WRN acetylation by CBP significantly reduces its ubiquitination. Importantly, we found that WRN is strongly acetylated and stabilized in response to mitomycin C (MMC) treatment. H1299 cells stably expressing WRN-6KR, which mimics unacetylated WRN, display significantly higher MMC sensitivity compared with the cells expressing wild-type WRN. Conclusion/Significance: Taken together, these data demonstrate that WRN acetylation regulates its stability and has significant implications regarding the role of acetylation on WRN function in response to DNA damage
    • …
    corecore