2 research outputs found

    High temperature tribological behaviour of metal matrix composites produced by SPS

    Get PDF
    Materials used as friction components in transportation field are subjected to extreme working conditions: they rapidly reach their structural limits and critical parts require to be regularly replaced. Alternative solutions withstanding higher operating conditions imply to find innovative materials. Steel matrix composites including various solid lubricants, WS2 and h-BN, able to support high temperatures were developed using a Spark Plasma Sintering technique, which makes possible the formation of new microstructures out of reach by conventional means. Sliding tests were conducted using a pin-on-disc tribometer in air at 450°C, with a normal load of 15 N and various velocities ranged from 0.1 to 1.5 m/s. Influence of solid lubricant content and sensitivity to test parameters were studied in terms of friction and wear responses of the contacting materials. Test results reveal an improvement of friction properties for composites containing highest WS2contents. A reduction of wear is quantified for all composites, and the best behaviour is observed for those that contain WS2. In agreement with the third body approach, interpretations are proposed to describe the interphase dynamics within the contact

    Tribological behaviour of stellite matrix composites for high temperatures applications

    Get PDF
    Extreme working conditions affect material used as friction components in transportation field: they rapidly reach their limits and critical parts require to be regularly replaced. Alternative solutions withstanding higher operating conditions imply to find innovative materials. Stellite matrix composites including various solid lubricants, WS2 and h-BN, able to admitextreme conditions were developed using a Spark Plasma Sintering technique, which makes possible the formation of new microstructures out of reach by conventional means. Sliding tests were conducted using a pin-on-disc tribometer in air at 450°C, with a velocity of 0,25 m/s and various normal load ranged from 2.5 to 40 N. Influence of solid lubricant content and sensitivity to test parameters were studied in terms of friction and wear responses of the contacting materials. Friction properties are equivalent to Stellite ones and sometimes lesseffective. A reduction of wear is quantified for many composites, and the best behavior is observed for those that contain WS2. In agreement with the third body approach, interpretations are proposed to describe the interphase dynamics within the contact
    corecore