55 research outputs found

    Saturation of adrenomedullin receptors plays an important role in reducing pulmonary clearance of adrenomedullin during the late stage of sepsis

    Get PDF
    AbstractAdrenomedullin (AM) is a potent vasodilator that plays a major role in the cardiovascular response during the progression of sepsis. Although pulmonary clearance of AM (i.e., the primary site of AM clearance) is reduced during the late, hypodynamic stage of sepsis, the role of AM receptors under such conditions remains unclear. This study was carried out to test the hypothesis that saturation of AM receptors is responsible for the decreased clearance of AM in the lungs during sepsis. Polymicrobial sepsis was induced in male adult rats by cecal ligation and puncture (CLP). At 20 h after CLP (i.e., the late phase), 125I-labeled rat AM was administered through the jugular vein, both with (+) and without (−) pre-injection of the human AM fragment AM22–52 (an AM receptor antagonist). Pulmonary tissue samples were harvested after 30 min and the radioactivity was determined. In addition, lung levels of AM were determined at 5 and 20 h after CLP by radioimmunoassay. Alterations in gene expression of the recently identified AM receptor subunits calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein-2 and -3 (RAMP-2 and -3) were assessed in the lungs by reverse transcription–polymerase chain reaction (RT–PCR) at 5 and 20 h after CLP. The results indicate that there was a significant decrease in pulmonary [125I]AM clearance at 20 h in −AM22–52 CLP animals. Lung clearance in +AM22–52 sham animals was significantly lower than in −AM22–52 sham animals and was not statistically different from the −AM22–52 CLP group. There was no statistical difference between +AM22–52 and −AM22–52 CLP groups. However, there was a significant increase in lung AM levels at 20 but not 5 h after CLP. In addition, RAMP-3 expression was significantly upregulated at 5 but not 20 h after CLP. There were no alterations in the expression of CRLR or RAMP-2 at either time point. These results suggest that pulmonary AM receptors become saturated as more AM enters the bloodstream, thereby reducing the ability of the lungs to clear this peptide during late sepsis. Early upregulation of RAMP-3 may be a compensatory mechanism to help clear the upregulated AM from the bloodstream. The lack of upregulation of RAMP-3 during late sepsis could also contribute to the decreased clearance observed during this phase

    Enhancing Training of Staff of the Agricultural Development Programme for Effective Agricultural Extension Service Delivery in Nigeria

    Get PDF
    This paper, identified the areas where staff of the Agricultural Development Programme (ADP) that carry out grassroots extension service delivery need to be trained and the field problems requiring research intervention. Secondary data from Annual Performance Survey (APS) report of NAERLS and NPAFS between 2010 and 2012 were used. The data were analyzed using descriptive statistics. Results showed that the most frequent key areas where trainings needed were long term course, short term refresher trainings, pre-season training, management training for administrative staff, specialized for subject matter specialist and data collection processing/analysis. The study further revealed that the development of livestock feed formula from local materials, heat-tolerant and disease resistant varieties of tomato and wheat were the most pressing problems requiring the researchers’ attention. It is recommended that ADPs should be given periodic training by relevant organizations on the identified areas and researchers should focus their researches more on the identified problems requiring research intervention. Moreover, state governments should adequately sponsor trainings of ADPs in their various states. This will strengthen the ADPs skills and increase their productivities for an effective extension service delivery in Nigeria

    Enhancing Training of Staff of the Agricultural Development Programme for Effective Agricultural Extension Service Delivery in Nigeria

    Get PDF
    This paper, identified the areas where staff of the Agricultural Development Programme (ADP) that carry out grassroots extension service delivery need to be trained and the field problems requiring research intervention. Secondary data from Annual Performance Survey (APS) report of NAERLS and NPAFS between 2010 and 2012 were used. The data were analyzed using descriptive statistics. Results showed that the most frequent key areas where trainings needed were long term course, short term refresher trainings, pre-season training, management training for administrative staff, specialized for subject matter specialist and data collection processing/analysis. The study further revealed that the development of livestock feed formula from local materials, heat-tolerant and disease resistant varieties of tomato and wheat were the most pressing problems requiring the researchers’ attention. It is recommended that ADPs should be given periodic training by relevant organizations on the identified areas and researchers should focus their researches more on the identified problems requiring research intervention. Moreover, state governments should adequately sponsor trainings of ADPs in their various states. This will strengthen the ADPs skills and increase their productivities for an effective extension service delivery in Nigeria

    Hepatocyte Growth Factor Increases Osteopontin Expression in Human Osteoblasts through PI3K, Akt, c-Src, and AP-1 Signaling Pathway

    Get PDF
    BACKGROUND: Hepatocyte growth factor (HGF) has been demonstrated to stimulate osteoblast proliferation and participated bone remodeling. Osteopontin (OPN) is a secreted phosphoglycoprotein that belongs to the SIBLING family and is present during bone mineralization. However, the effects of HGF on OPN expression in human osteoblasts are large unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that HGF induced OPN expression in human osteoblasts dose-dependently. HGF-mediated OPN production was attenuated by c-Met inhibitor and siRNA. Pretreatment of osteoblasts with PI3K inhibitor (Ly294002), Akt inhibitor, c-Src inhibitor (PP2), or AP-1 inhibitor (curcumin) blocked the potentiating action of HGF. Stimulation of osteoblasts with HGF enhanced PI3K, Akt, and c-Src activation. In addition, incubation of cells with HGF also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the OPN promoter. HGF-mediated AP-1-luciferase activity and c-Jun binding to the AP-1 element was reduced by c-Met inhibitor, Ly294002, Akt inhibitor, and PP2. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the interaction between HGF and c-Met increases OPN expression in human osteoblasts via the PI3K, Akt, c-Src, c-Jun, and AP-1 signaling pathway

    1,25(OH)2D3 Alters Growth Plate Maturation and Bone Architecture in Young Rats with Normal Renal Function

    Get PDF
    Whereas detrimental effects of vitamin D deficiency are known over century, the effects of vitamin D receptor activation by 1,25(OH)2D3, the principal hormonal form of vitamin D, on the growing bone and its growth plate are less clear. Currently, 1,25(OH)2D3 is used in pediatric patients with chronic kidney disease and mineral and bone disorder (CKD-MBD) and is strongly associated with growth retardation. Here, we investigate the effect of 1,25(OH)2D3 treatment on bone development in normal young rats, unrelated to renal insufficiency. Young rats received daily i.p. injections of 1 µg/kg 1,25(OH)2D3 for one week, or intermittent 3 µg/kg 1,25(OH)2D3 for one month. Histological analysis revealed narrower tibial growth plates, predominantly in the hypertrophic zone of 1,25(OH)2D3-treated animals in both experimental protocols. This phenotype was supported by narrower distribution of aggrecan, collagens II and X mRNA, shown by in situ hybridization. Concomitant with altered chondrocyte maturation, 1,25(OH)2D3 increased chondrocyte proliferation and apoptosis in terminal hypertrophic cells. In vitro treatment of the chondrocytic cell line ATDC5 with 1,25(OH)2D3 lowered differentiation and increased proliferation dose and time-dependently. Micro-CT analysis of femurs from 1-week 1,25(OH)2D3-treated group revealed reduced cortical thickness, elevated cortical porosity, and higher trabecular number and thickness. 1-month administration resulted in a similar cortical phenotype but without effect on trabecular bone. Evaluation of fluorochrome binding with confocal microscopy revealed inhibiting effects of 1,25(OH)2D3 on intracortical bone formation. This study shows negative effects of 1,25(OH)2D3 on growth plate and bone which may contribute to the exacerbation of MBD in the CKD pediatric patients

    The primary cilium as a dual sensor of mechanochemical signals in chondrocytes

    Get PDF
    The primary cilium is an immotile, solitary, and microtubule-based structure that projects from cell surfaces into the extracellular environment. The primary cilium functions as a dual sensor, as mechanosensors and chemosensors. The primary cilia coordinate several essential cell signaling pathways that are mainly involved in cell division and differentiation. A primary cilium malfunction can result in several human diseases. Mechanical loading is sense by mechanosensitive cells in nearly all tissues and organs. With this sensation, the mechanical signal is further transduced into biochemical signals involving pathways such as Akt, PKA, FAK, ERK, and MAPK. In this review, we focus on the fundamental functional and structural features of primary cilia in chondrocytes and chondrogenic cells

    Biology of urothelial tumorigenesis: insights from genetically engineered mice

    Get PDF
    Urothelium, one of the slowest cycling epithelia in the body, embodies a unique biological context for cellular transformation. Introduction of oncogenes into or removing tumor suppressor genes from the urothelial cells or a combination of both using the transgenic and/or knockout mouse approaches has provided useful insights into the molecular mechanisms of urothelial transformation and tumorigenesis. It is becoming increasingly clear that over-activation of the receptor tyrosine kinase (RTK) pathway, as exemplified by the constitutively activated Ha-ras oncogene, is both necessary and sufficient to initiate the low-grade, non-invasive urothelial carcinomas. Dosage of the mutated Ha-ras, but not concurrent inactivation of pro-senescence molecules p16Ink4a and p19Arf, dictates whether and when the low-grade urothelial carcinomas arise. Inactivation of both p53 and pRb, a prevailing paradigm previously proposed for muscle-invasive urothelial tumorigenesis, is found to be necessary but insufficient to initiate this urothelial carcinoma variant. Instead, downregulation in p53/pRb co-deficient urothelial cells of p107, a pRb family member, is associated with the genesis of the muscle-invasive bladder cancers. p53 deficiency also seems to be capable of cooperating with that of PTEN in eliciting invasive urothelial carcinomas. The genetically engineered mice have improved the molecular definition of the divergent pathways of urothelial tumorigenesis and progression, helped delineate the intricate crosstalk among different genetic alterations within a urothelium-specific context, identified new prognostic markers and novel therapeutic targets potentially applicable for clinical intervention, and provided in vivo platforms for testing preventive strategies of bladder cancer

    Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications

    Get PDF
    corecore