2,270 research outputs found

    Search for Spatial Structures at Scales Z~1. III. The Effect of Lensing on QSO ?

    Get PDF
    We carried out a search for peak inhomogeneities in the distribution of matter - namely clumps and voids, within the range Z ~ 1-3. We used a new method, based on the lensing of quasars by a combination of lenses, belonging to the above sought inhomogeneities in the matter distribution. This work confirms the evidence of the existence of inhomogeneities found by us earlier - of a clump (superattractor N.1), and of a void (supervoid). Besides, the existence of a new gigantic clump (superattractor N.2) was also discovered at Z ~ 3. These clumps could well serve as centers of the Bose-condensation in the early Universe; in particular - as Anselm's arion condensate, which leads to the formation of quasiperiodic structures with a period p ~ 100-200 Mpc.Comment: 22 pages, 2 figures, 6 tables. submitted to Astrophys.& Space Sc

    Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation

    Get PDF
    The critical behavior of the two-dimensional N-vector cubic model is studied within the field-theoretical renormalization-group (RG) approach. The beta-functions and critical exponents are calculated in the five-loop approximation, RG series obtained are resummed using Pade-Borel-Leroy and conformal mapping techniques. It is found that for N = 2 the continuous line of fixed points is well reproduced by the resummed RG series and an account for the five-loop terms makes the lines of zeros of both beta-functions closer to each another. For N > 2 the five-loop contributions are shown to shift the cubic fixed point, given by the four-loop approximation, towards the Ising fixed point. This confirms the idea that the existence of the cubic fixed point in two dimensions under N > 2 is an artifact of the perturbative analysis. In the case N = 0 the results obtained are compatible with the conclusion that the impure critical behavior is controlled by the Ising fixed point.Comment: 18 pages, 4 figure

    Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials

    Get PDF
    We theoretically study the propagation of large-wavevector waves (volume plasmon polaritons) in multilayer hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength metal-dielectric multilayer ("substructure") are modulated ("superstructured") on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic band gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop bands due to Bragg reflection form within the volume plasmonic band. When a cavity layer is introduced in an otherwise periodic superstructure, resonance peaks of the Fabry-Perot nature are present within the stop bands. More complicated superstructure geometries are also considered. For example, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar spectral signatures in the volume plasmonic band. Multiscale hyperbolic metamaterials are shown to be a promising platform for large-wavevector bulk plasmonic waves, whether they are considered for use as a new kind of information carrier or for far-field subwavelength imaging.Comment: 12 pages, 10 figures, now includes Appendix
    corecore