40 research outputs found

    Neutrino Oscillations v.s. Leptogenesis in SO(10) Models

    Full text link
    We study the link between neutrino oscillations and leptogenesis in the minimal framework assuming an SO(10) see-saw mechanism with 3 families. Dirac neutrino masses being fixed, the solar and atmospheric data then generically induce a large mass-hierarchy and a small mixing between the lightest right-handed neutrinos, which fails to produce sufficient lepton asymmetry by 5 orders of magnitudes at least. This failure can be attenuated for a very specific value of the mixing sin^2(2\theta_{e3})=0.1, which interestingly lies at the boundary of the CHOOZ exclusion region, but will be accessible to future long baseline experiments.Comment: 23 pages, 8 eps figures, JHEP3 format; more accurate effect of dilution reduces previous results, inclusion of all phases, added reference

    Symmetry Nonrestoration in a Gross-Neveu Model with Random Chemical Potential

    Full text link
    We study the symmetry behavior of the Gross-Neveu model in three and two dimensions with random chemical potential. This is equivalent to a four-fermion model with charge conjugation symmetry as well as Z_2 chiral symmetry. At high temperature the Z_2 chiral symmetry is always restored. In three dimensions the initially broken charge conjugation symmetry is not restored at high temperature, irrespective of the value of the disorder strength. In two dimensions and at zero temperature the charge conjugation symmetry undergoes a quantum phase transition from a symmetric state (for weak disorder) to a broken state (for strong disorder) as the disorder strength is varied. For any given value of disorder strength, the high-temperature behavior of the charge conjugation symmetry is the same as its zero-temperature behavior. Therefore, in two dimensions and for strong disorder strength the charge conjugation symmetry is not restored at high temperature.Comment: 16 pages, 3 figure
    corecore