291 research outputs found

    A consistent interpretation of the low temperature magneto-transport in graphite using the Slonczewski--Weiss--McClure 3D band structure calculations

    Full text link
    Magnetotransport of natural graphite and highly oriented pyrolytic graphite (HOPG) has been measured at mK temperatures. Quantum oscillations for both electron and hole carriers are observed with orbital angular momentum quantum number up to N≈90N\approx90. A remarkable agreement is obtained when comparing the data and the predictions of the Slonczewski--Weiss--McClure tight binding model for massive fermions. No evidence for Dirac fermions is observed in the transport data which is dominated by the crossing of the Landau bands at the Fermi level, corresponding to dE/dkz=0dE/dk_z=0, which occurs away from the HH point where Dirac fermions are expected.Comment: 3 figure

    Dirac fermions at the H point of graphite: Magneto-transmission studies

    Full text link
    We report on far infrared magneto-transmission measurements on a thin graphite sample prepared by exfoliation of highly oriented pyrolytic graphite. In magnetic field, absorption lines exhibiting a blue-shift proportional to sqrtB are observed. This is a fingerprint for massless Dirac holes at the H point in bulk graphite. The Fermi velocity is found to be c*=1.02x10^6 m/s and the pseudogap at the H point is estimated to be below 10 meV. Although the holes behave to a first approximation as a strictly 2D gas of Dirac fermions, the full 3D band structure has to be taken into account to explain all the observed spectral features.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    3D Dirac semimetal Cd3As2: A review of material properties

    Full text link
    Cadmium arsenide (Cd3As2) - a time-honored and widely explored material in solid-state physics - has recently attracted considerable attention. This was triggered by a theoretical prediction concerning the presence of 3D symmetry-protected massless Dirac electrons, which could turn Cd3As2 into a 3D analogue of graphene. Subsequent extended experimental studies have provided us with compelling experimental evidence of conical bands in this system, and revealed a number of interesting properties and phenomena. At the same time, some of the material properties remain the subject of vast discussions despite recent intensive experimental and theoretical efforts, which may hinder the progress in understanding and applications of this appealing material. In this review, we focus on the basic material parameters and properties of Cd3As2, in particular those which are directly related to the conical features in the electronic band structure of this material. The outcome of experimental investigations, performed on Cd3As2 using various spectroscopic and transport techniques within the past sixty years, is compared with theoretical studies. These theoretical works gave us not only simplified effective models, but more recently, also the electronic band structure calculated numerically using ab initio methods.Comment: 16 pages, 16 figure

    Thermal conductivity of graphene in Corbino membrane geometry

    Full text link
    Local laser excitation and temperature readout from the intensity ratio of Stokes to anti-Stokes Raman scattering signals are employed to study the thermal properties of a large graphene membrane. The concluded value of the heat conductivity coefficient \kappa ~ 600 W/m \cdot K is smaller than previously reported but still validates the conclusion that graphene is a very good thermal conductor.Comment: 4 pages, 3 figure

    Graphite from the viewpoint of Landau level spectroscopy: An effective graphene bilayer and monolayer

    Full text link
    We describe an infrared transmission study of a thin layer of bulk graphite in magnetic fields up to B = 34 T. Two series of absorption lines whose energy scales as sqrtB and B are present in the spectra and identified as contributions of massless holes at the H point and massive electrons in the vicinity of the K point, respectively. We find that the optical response of the K point electrons corresponds, over a wide range of energy and magnetic field, to a graphene bilayer with an effective inter-layer coupling 2\gamma_1, twice the value for a real graphene bilayer, which reflects the crystal ordering of bulk graphite along the c-axis. The K point electrons thus behave as massive Dirac fermions with a mass enhanced twice in comparison to a true graphene bilayer.Comment: 4 pages, 2 figure

    Multiple magneto-phonon resonances in graphene

    Full text link
    Our low-temperature magneto-Raman scattering measurements performed on graphene-like locations on the surface of bulk graphite reveal a new series of magneto-phonon resonances involving both K-point and Gamma-point phonons. In particular, we observe for the first time the resonant splitting of three crossing excitation branches. We give a detailed theoretical analysis of these new resonances. Our results highlight the role of combined excitations and the importance of multi-phonon processes (from both K and Gamma points) for the relaxation of hot carriers in graphene.Comment: 20 pages, 11 figure

    A micro-magneto-Raman scattering study of graphene on a bulk graphite substrate

    Full text link
    We report on a magneto-Raman scattering study of graphene flakes located on the surface of a bulk graphite substrate. By spatially mapping the Raman scattering response of the surface of bulk graphite with an applied magnetic field, we pinpoint specific locations which show the electronic excitation spectrum of graphene. We present the characteristic Raman scattering signatures of these specific locations. We show that such flakes can be superimposed with another flake and still exhibit a graphene-like excitation spectrum. Two different excitation laser energies (514.5 and 720 nm) are used to investigate the excitation wavelength dependence of the electronic Raman scattering signal.Comment: 6 pages, 5 figure

    Electronic structure of unidirectional superlattices in crossed electric and magnetic fields and related terahertz oscillations

    Full text link
    We have studied Bloch electrons in a perfect unidirectional superlattice subject to crossed electric and magnetic fields, where the magnetic field is oriented ``in-plane'', i.e. in parallel to the sample plane. Two orientation of the electric field are considered. It is shown that the magnetic field suppresses the intersubband tunneling of the Zener type, but does not change the frequency of Bloch oscillations, if the electric field is oriented perpendicularly to both the sample plane and the magnetic field. The electric field applied in-plane (but perpendicularly to the magnetic field) yields the step-like electron energy spectrum, corresponding to the magnetic-field-tunable oscillations alternative to the Bloch ones.Comment: 7 pages, 1 figure, accepted for publication in Phys. Rev.
    • 

    corecore