21 research outputs found

    Evolution of silver in a eutectic-based Bi2O3–Ag metamaterial

    No full text
    International audienceThe development of novel manufacturing techniques of nano-/micromaterials, especially metallodielectric materials, has enabled dynamic development of such fields as nanoplasmonics. However, the fabrication methods are still mostly based on time-consuming and costly top-down techniques limited to two-dimensional materials. Recently, directional solidification has been proposed and utilized for manufacturing of volumetric nanoplasmonic materials using the example of a Bi2O3–Ag eutectic-based nanocomposite. Here, we explain the evolution of silver in this composite, from the crystal growth through the post-growth annealing processes. Investigation with tunneling electron microscopy shows that silver initially enters the composite as an amorphous AgBiO3 phase, which is formed as a wetting layer between the grains of Bi2O3 primary phase. The post-growth annealing leads to decomposition of the amorphous phase into Bi2O3 nanocrystals and intergranular Ag nanoparticles, providing the tunable localized surface plasmon resonance at yellow light wavelengths

    Czochralski crystal growth, thermal conductivity, and magnetic properties of Pr(x)La(1- x)AlO3, where x = 1, 0.75, 0.55, 0.40, 0

    Full text link
    Crystals of Pr(x)La(1-x)AlO3 solid solution have been grown by the Czochralski method for the first time, to the best of our knowledge. Crystals with high praseodymium concentration tend to grow spirally. The color of the crystals changes with chemical composition. X-ray diffraction shows an increase of the lattice constants with an increase in lanthanum ion concentration. The thermal conductivity has been investigated in the temperature range from 5 to 300 K. Completely different behavior of thermal conductivity is observed at low temperatures for the investigated crystals, whereas it remains roughly constant at high temperatures. The values of magnetic susceptibility lie within the expected range that could be expected for a paramagnetic material. (Figure Presented) © 2011 American Chemical Society
    corecore