2,477 research outputs found
Robust optimization with incremental recourse
In this paper, we consider an adaptive approach to address optimization
problems with uncertain cost parameters. Here, the decision maker selects an
initial decision, observes the realization of the uncertain cost parameters,
and then is permitted to modify the initial decision. We treat the uncertainty
using the framework of robust optimization in which uncertain parameters lie
within a given set. The decision maker optimizes so as to develop the best cost
guarantee in terms of the worst-case analysis. The recourse decision is
``incremental"; that is, the decision maker is permitted to change the initial
solution by a small fixed amount. We refer to the resulting problem as the
robust incremental problem. We study robust incremental variants of several
optimization problems. We show that the robust incremental counterpart of a
linear program is itself a linear program if the uncertainty set is polyhedral.
Hence, it is solvable in polynomial time. We establish the NP-hardness for
robust incremental linear programming for the case of a discrete uncertainty
set. We show that the robust incremental shortest path problem is NP-complete
when costs are chosen from a polyhedral uncertainty set, even in the case that
only one new arc may be added to the initial path. We also address the
complexity of several special cases of the robust incremental shortest path
problem and the robust incremental minimum spanning tree problem
Generic model for tunable colloidal aggregation in multidirectional fields
Based on Brownian Dynamics computer simulations in two dimensions we
investigate aggregation scenarios of colloidal particles with directional
interactions induced by multiple external fields. To this end we propose a
model which allows continuous change in the particle interactions from
point-dipole-like to patchy-like (with four patches). We show that, as a result
of this change, the non-equilibrium aggregation occurring at low densities and
temperatures transforms from conventional diffusion-limited cluster aggregation
(DLCA) to slippery DLCA involving rotating bonds; this is accompanied by a
pronounced change of the underlying lattice structure of the aggregates from
square-like to hexagonal ordering. Increasing the temperature we find a
transformation to a fluid phase, consistent with results of a simple mean-field
density functional theory
A simple combinatorial algorithm for submodular function minimization
This paper presents a new simple algorithm for minimizing submodular functions. For integer valued submodular functions, the algorithm runs in O(n6EO log nM) [O (n superscript 6 E O log nM)] time, where n is the cardinality of the ground set, M is the maximum absolute value of the function value, and EO is the time for function evaluation. The algorithm can be improved to run in O ((n4EO+n5)log nM) [O ((n superscript 4 EO + n superscript 5) log nM)] time. The strongly polynomial version of this faster algorithm runs in O((n5EO + n6) log n) [O ((n superscript 5 EO + n superscript 6) log n)] time for real valued general submodular functions. These are comparable to the best known running time bounds for submodular function minimization. The algorithm can also be implemented in strongly polynomial time using only additions, subtractions, comparisons, and the oracle calls for function evaluation. This is the first fully combinatorial submodular function minimization algorithm that does not rely on the scaling method.United States. Office of Naval Research  ( ONR grant N00014-08-1-0029
- …
