2,477 research outputs found

    Robust optimization with incremental recourse

    Full text link
    In this paper, we consider an adaptive approach to address optimization problems with uncertain cost parameters. Here, the decision maker selects an initial decision, observes the realization of the uncertain cost parameters, and then is permitted to modify the initial decision. We treat the uncertainty using the framework of robust optimization in which uncertain parameters lie within a given set. The decision maker optimizes so as to develop the best cost guarantee in terms of the worst-case analysis. The recourse decision is ``incremental"; that is, the decision maker is permitted to change the initial solution by a small fixed amount. We refer to the resulting problem as the robust incremental problem. We study robust incremental variants of several optimization problems. We show that the robust incremental counterpart of a linear program is itself a linear program if the uncertainty set is polyhedral. Hence, it is solvable in polynomial time. We establish the NP-hardness for robust incremental linear programming for the case of a discrete uncertainty set. We show that the robust incremental shortest path problem is NP-complete when costs are chosen from a polyhedral uncertainty set, even in the case that only one new arc may be added to the initial path. We also address the complexity of several special cases of the robust incremental shortest path problem and the robust incremental minimum spanning tree problem

    Generic model for tunable colloidal aggregation in multidirectional fields

    Get PDF
    Based on Brownian Dynamics computer simulations in two dimensions we investigate aggregation scenarios of colloidal particles with directional interactions induced by multiple external fields. To this end we propose a model which allows continuous change in the particle interactions from point-dipole-like to patchy-like (with four patches). We show that, as a result of this change, the non-equilibrium aggregation occurring at low densities and temperatures transforms from conventional diffusion-limited cluster aggregation (DLCA) to slippery DLCA involving rotating bonds; this is accompanied by a pronounced change of the underlying lattice structure of the aggregates from square-like to hexagonal ordering. Increasing the temperature we find a transformation to a fluid phase, consistent with results of a simple mean-field density functional theory

    A simple combinatorial algorithm for submodular function minimization

    Get PDF
    This paper presents a new simple algorithm for minimizing submodular functions. For integer valued submodular functions, the algorithm runs in O(n6EO log nM) [O (n superscript 6 E O log nM)] time, where n is the cardinality of the ground set, M is the maximum absolute value of the function value, and EO is the time for function evaluation. The algorithm can be improved to run in O ((n4EO+n5)log nM) [O ((n superscript 4 EO + n superscript 5) log nM)] time. The strongly polynomial version of this faster algorithm runs in O((n5EO + n6) log n) [O ((n superscript 5 EO + n superscript 6) log n)] time for real valued general submodular functions. These are comparable to the best known running time bounds for submodular function minimization. The algorithm can also be implemented in strongly polynomial time using only additions, subtractions, comparisons, and the oracle calls for function evaluation. This is the first fully combinatorial submodular function minimization algorithm that does not rely on the scaling method.United States. Office of Naval Research ( ONR grant N00014-08-1-0029
    • …
    corecore