19 research outputs found

    Validity of FFQ Estimates of Total Sugars, Added Sugars, Sucrose and Fructose Compared to Repeated 24-h Recalls in Adventist Health Study-2 Participants

    No full text
    Sugar intake is a potentially important aspect of diet which has not previously been validated in the Adventist Health Study-2 (AHS-2). We sought to validate the food frequency questionnaire (FFQ) measurement of total sugars, added sugars, sucrose, and fructose against multiple 24-h dietary recalls (recalls) in AHS-2 participants. Food consumption data from a self-administered FFQ and six recalls from 904 participants were combined with nutrient profile data to estimate daily sugar intake. Validity was evaluated among all participants and by race. FFQ and recall means were compared and correlation coefficients (Spearman’s, energy-adjusted log-transformed Pearson’s, deattenuated Pearson’s) were calculated. Mean total energy, total sugars, and fructose intake were higher in the FFQ, whereas added sugars and sucrose were higher in recalls. The energy-adjusted (log-transformed) deattenuated correlations among all participants were: total sugars (r = 0.42, 95% CI 0.32–0.52), added sugars (r = 0.50, 95% CI 0.36–0.59), sucrose (r = 0.32, 95% CI 0.23–0.42), and fructose (r = 0.50, 95% CI 0.40–0.59). We observed moderate validity for added sugars and fructose and low-moderate validity for total sugars and sucrose measured by the AHS-2 FFQ in this population. Dietary sugar estimates from this FFQ may be useful in assessing possible associations of sugars intake with health outcomes

    Red and Processed Meat and Mortality in a Low Meat Intake Population

    No full text
    Associations of low-to-moderate consumption of red and processed meat with mortality would add to the evidence of possible adverse effects of these common foods. This study aims to investigate the association of red and processed meat intake with mortality. The Adventist Health Study-2 (AHS-2) is a prospective cohort study of ~96,000 Seventh-day Adventist men and women recruited in the US and Canada between 2002 and 2007. The final analytic sample after exclusions was 72,149. Cox proportional hazards regression was used and hazard ratios (HR) and confidence intervals (CI) were obtained. Diet was assessed by a validated quantitative food frequency questionnaire (FFQ), calibrated using six 24-h dietary recalls. Mortality outcome data were obtained from the National Death Index. During a mean follow-up of 11.8 years, there were 7961 total deaths, of which 2598 were Cardiovascular diseases (CVD) deaths and 1873 were cancer deaths. Unprocessed red meat was associated with risk of all-cause mortality (HR: 1.18; 95% CI: 1.07–1.31) and CVD mortality (HR: 1.26; 95% CI: 1.05–1.50). Processed meat alone was not significantly associated with risk of mortality. The combined intake of red and processed meat was associated with all-cause mortality (HR: 1.23; 95% CI: 1.11–1.36) and CVD mortality (HR: 1.34; 95% CI: 1.12–1.60). These findings suggest moderately higher risks of all-cause and CVD mortality associated with red and processed meat in a low meat intake population

    The Biology of Veganism: Plasma Metabolomics Analysis Reveals Distinct Profiles of Vegans and Non-Vegetarians in the Adventist Health Study-2 Cohort

    No full text
    It is unclear how vegetarian dietary patterns influence plasma metabolites involved in biological processes regulating chronic diseases. We sought to identify plasma metabolic profiles distinguishing vegans (avoiding meat, eggs, dairy) from non-vegetarians (consuming ≥28 g/day red meat) of the Adventist Health Study-2 cohort using global metabolomics profiling with ultra-performance liquid chromatography mass spectrometry (UPLC-MS/MS). Differences in abundance of metabolites or biochemical subclasses were analyzed using linear regression models, adjusting for surrogate and confounding variables, with cross-validation to simulate results from an independent sample. Random forest was used as a learning tool for classification, and principal component analysis was used to identify clusters of related metabolites. Differences in covariate-adjusted metabolite abundance were identified in over 60% of metabolites (586/930), after adjustment for false discovery. The vast majority of differentially abundant metabolites or metabolite subclasses showed lower abundance in vegans, including xanthine, histidine, branched fatty acids, acetylated peptides, ceramides, and long-chain acylcarnitines, among others. Many of these metabolite subclasses have roles in insulin dysregulation, cardiometabolic phenotypes, and inflammation. Analysis of metabolic profiles in vegans and non-vegetarians revealed vast differences in these two dietary groups, reflecting differences in consumption of animal and plant products. These metabolites serve as biomarkers of food intake, many with potential pathophysiological consequences for cardiometabolic diseases

    DNA Methylation Profiles of Vegans and Non-Vegetarians in the Adventist Health Study-2 Cohort

    No full text
    We sought to determine if DNA methylation patterns differed between vegans and non-vegetarians in the Adventist Health Study-2 cohort. Genome-wide DNA methylation derived from buffy coat was profiled in 62 vegans and 142 non-vegetarians. Using linear regression, methylation of CpG sites and genes was categorized or summarized according to various genic/intergenic regions and CpG island-related regions, as well as the promoter. Methylation of genes was measured as the average methylation of available CpG’s annotated to the nominated region of the respective gene. A permutation method defining the null distribution adapted from Storey et al. was used to adjust for false discovery. Differences in methylation of several CpG sites and genes were detected at a false discovery rate < 0.05 in region-specific and overall analyses. A vegan diet was associated predominantly with hypomethylation of genes, most notably methyltransferase-like 1 (METTL1). Although a limited number of differentially methylated features were detected in the current study, the false discovery method revealed that a much larger proportion of differentially methylated genes and sites exist, and could be detected with a larger sample size. Our findings suggest modest differences in DNA methylation in vegans and non-vegetarians, with a much greater number of detectable significant differences expected with a larger sample

    The Safe and Effective Use of Plant-Based Diets with Guidelines for Health Professionals

    No full text
    Plant-based diets, defined here as including both vegan and lacto-ovo-vegetarian diets, are growing in popularity throughout the Western world for various reasons, including concerns for human health and the health of the planet. Plant-based diets are more environmentally sustainable than meat-based diets and have a reduced environmental impact, including producing lower levels of greenhouse gas emissions. Dietary guidelines are normally formulated to enhance the health of society, reduce the risk of chronic diseases, and prevent nutritional deficiencies. We reviewed the scientific data on plant-based diets to summarize their preventative and therapeutic role in cardiovascular disease, cancer, diabetes, obesity, and osteoporosis. Consuming plant-based diets is safe and effective for all stages of the life cycle, from pregnancy and lactation, to childhood, to old age. Plant-based diets, which are high in fiber and polyphenolics, are also associated with a diverse gut microbiota, producing metabolites that have anti-inflammatory functions that may help manage disease processes. Concerns about the adequate intake of a number of nutrients, including vitamin B12, calcium, vitamin D, iron, zinc, and omega-3 fats, are discussed. The use of fortified foods and/or supplements as well as appropriate food choices are outlined for each nutrient. Finally, guidelines are suggested for health professionals working with clients consuming plant-based diets
    corecore