99 research outputs found

    Role of the AP-1 transcription factor FOSL1 in endothelial cells adhesion and migration.

    Get PDF
    Vasculogenesis and angiogenesis, the fundamental processes by which new blood vessels are formed, involve the proliferation, migration, and remodeling of endothelial cells. Dynamic adhesion of endothelial cells to extracellular matrix plays a fundamental role in all these events. Key regulators of endothelial cells adhesion and migration are the αvβ3 and uPA-uPAR complexes. The αvβ3 integrin heterodimer is the receptor for extracellular matrix components such as vitronectin and is overexpressed on the cell surface of angiogenic endothelial cells, but not quiescent cells lining normal vessels. The uPA-uPAR complex contributes to extracellular matrix remodeling by mediating proteolytic activity at the leading edge of migrating cells. We recently reported that the FOSL1 transcription factor of the AP-1 family plays a pivotal role in the regulation of the level of the αvβ3 and uPA-uPAR complexes on the surface of endothelial cells. In this commentary, we review the current knowledge of αv and β3 transcriptional regulation in endothelial cells and discuss the role of FOSL1 in angiogenesis

    Protein Kinase CK2α′ Is Induced by Serum as a Delayed Early Gene and Cooperates with Ha-ras in Fibroblast Transformation

    Get PDF
    Protein kinase CK2 is an ubiquitous and pleiotropic Ser/Thr protein kinase composed of two catalytic (alpha and/or alpha') and two noncatalytic (beta) subunits forming a heterotetrameric holoenzyme involved in cell growth and differentiation. Here we report the identification, cloning, and oncogenic activity of the murine CK2alpha' subunit. Serum treatment of quiescent mouse fibroblasts induces CK2alpha' mRNA expression, which peaks at 4 h. The kinetics of CK2alpha' expression correlate with increased kinase activity toward a specific CK2 holoenzyme peptide substrate. The ectopic expression of CK2alpha' (or CK2alpha) cooperates with Ha-ras in foci formation of rat primary embryo fibroblasts. Moreover, we observed that BALB/c 3T3 fibroblasts transformed with Ha-ras and CK2alpha' show a faster growth rate than cells transformed with Ha-ras alone. In these cells the higher growth rate correlates with an increase in calmodulin phosphorylation, a protein substrate specifically affected by isolated CK2 catalytic subunits but not by CK2 holoenzyme, suggesting that unbalanced expression of a CK2 catalytic subunit synergizes with Ha-ras in cell transformation

    The Controversial Role of TGF-β in Neovascular Age-Related Macular Degeneration Pathogenesis.

    Get PDF
    The multifunctional transforming growth factors-beta (TGF-βs) have been extensively studied regarding their role in the pathogenesis of neovascular age-related macular degeneration (nAMD), a major cause of severe visual loss in the elderly in developed countries. Despite this, their effect remains somewhat controversial. Indeed, both pro- and antiangiogenic activities have been suggested for TGF-β signaling in the development and progression of nAMD, and opposite therapies have been proposed targeting the inhibition or activation of the TGF-β pathway. The present article summarizes the current literature linking TGF-β and nAMD, and reviews experimental data supporting both pro- and antiangiogenic hypotheses, taking into account the limitations of the experimental approaches

    An apical actin-rich domain drives the establishment of cell polarity during cell adhesion.

    Get PDF
    One of the most important questions in cell biology concerns how cells reorganize after sensing polarity cues. In the present study, we describe the formation of an actin-rich domain on the apical surface of human primary endothelial cells adhering to the substrate and investigate its role in cell polarity. We used confocal immunofluorescence procedures to follow the redistribution of proteins required for endothelial cell polarity during spreading initiation. Activated Moesin, vascular endothelial cadherin and partitioning defective 3 were found to be localized in the apical domain, whereas podocalyxin and caveolin-1 were distributed along the microtubule cytoskeleton axis, oriented from the centrosome to the cortical actin-rich domain. Moreover, activated signaling molecules were localized in the core of the apical domain in tight association with filamentous actin. During cell attachment, loss of the apical domain by Moesin silencing or drug disruption of the actin cytoskeleton caused irregular cell spreading and mislocalization of polarity markers. In conclusion, our results suggest that the apical domain that forms during the spreading process is a structural organizer of cell polarity by regulating trafficking and activation of signaling proteins

    Sexual dimorphism in tuberculosis incidence: children cases compared to adult cases in Tuscany from 1997 to 2011.

    Get PDF
    BackgroundIn most countries, men seem to be more susceptible to tuberculosis (TB) than women, but only few studies have investigated the reasons of this gender incidence difference. The effect of sexual hormones on immunity is possible.MethodsData from children and adults, living in Tuscany, hospitalized for TB in all the thirty-one regional hospitals from January 1st 1997 to December 31st 2011, were analyzed using the International Classification of Disease, 9th Revision, Clinical Modification.ResultsDuring the study period, 10,744 patients were hospitalized with TB diagnosis, precisely 279 (2.6%) children [0-14 years], 205 (1.9%) adolescents [15-18 years] and 10,260 (95.5%) adults [≥ 18 years]. The male population ranged from 249 patients (51.4%) in children and adolescents, to 6,253 (60.9%) in adults. Pulmonary TB was the most common form both in children and adults. Men were more likely than women to have pulmonary TB after puberty, while no significant differences were found between males and females in the hospitalized children. The male gender also resulted the most affected for the extra-pulmonary disease sites, excluding the lymphatic system, during the reproductive age.ConclusionsOur findings suggest a possible role of sexual hormones in the development of TB. No significant male-female difference was found in TB incidence among children, while a sex ratio significantly different from 1:1 emerged among reproductive age classes. An increased incidence difference also persisted in older men, suggesting that male-biased risk factors could influence TB progression. Some limitations of the study are the sample size, the method of discharge diagnosis which could be deficient in accuracy in some cases, the increasing number of immigrants and the lack of possible individual risk factors (smoke and alcohol). Further studies are needed to investigate the possible hormone-driven immune mechanisms determining the sexual dimorphism in TB

    New molecular targets for the treatment of neovascular age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a progressive chronic disease that currently represents the leading cause of irreversible vision loss in the western world. Experimental and clinical evidence has demonstrated that vascular endothelial growth factor A (VEGF-A) plays an important role in promoting the choroidal neovascularization that characterizes the wet form of AMD. Intravitreal injection of anti- VEGF-A agents is the current treatment of choice for neovascular AMD (nAMD). These agents have brought about dramatic changes in the treatment of nAMD, but most patients require frequently repeated injections and regular long-term follow-up, with a significant percentage of them showing resistance to anti-VEGF-A drugs. Thus, the identification of additional therapies that could improve the treatment protocols is needed. There are numerous areas of investigation into new treatments, with increasing efforts being made to study drugs that address various targets along the angiogenic signaling cascade, or other pathways related to the onset of nAMD. The aim of the present review is to summarize and discuss promising new therapies and targets that have the potential to improve outcomes and to lengthen treatment durability, especially in patients with recalcitrant or recurrent forms of nAMD

    Dimerization of the C-type lectin-like receptor CD93 promotes its binding to Multimerin-2 in endothelial cells

    Get PDF
    Blocking the signaling activated by the plasma membrane receptor CD93 has recently been demonstrated a useful tool in antiangiogenic treatment and oncotherapy. In the proliferating endothelium, CD93 regulates cell adhesion, migration, and vascular maturation, yet it is unclear how CD93 interacts with the extracellular matrix activating signaling pathways involved in the vascular remodeling. Here for the first time we show that in endothelial cells CD93 is structured as a dimer and that this oligomeric form is physiologically instrumental for the binding of CD93 to its ligand Multimerin-2. Crystallographic X-ray analysis of recombinant CD93 reveals the crucial role played by the C-type lectin-like and sushi-like domains in arranging as an antiparallel dimer to achieve a functional binding state, providing key information for the future design of new drugs able to hamper CD93 function in neovascular pathologies

    Optical Response of CVD-Grown ML-WS2 Flakes on an Ultra-Dense Au NP Plasmonic Array

    Get PDF
    The combination of metallic nanostructures with two-dimensional transition metal dichalcogenides is an efficient way to make the optical properties of the latter more appealing for opto-electronic applications. In this work, we investigate the optical properties of monolayer WS2 flakes grown by chemical vapour deposition and transferred onto a densely-packed array of plasmonic Au nanoparticles (NPs). The optical response was measured as a function of the thickness of a dielectric spacer intercalated between the two materials and of the system temperature, in the 75–350 K range. We show that a weak interaction is established between WS2 and Au NPs, leading to temperature- and spacer-thickness-dependent coupling between the localized surface plasmon resonance of Au NPs and the WS2 exciton. We suggest that the closely-packed morphology of the plasmonic array promotes a high confinement of the electromagnetic field in regions inaccessible by the WS2 deposited on top. This allows the achievement of direct contact between WS2 and Au while preserving a strong connotation of the properties of the two materials also in the hybrid system

    SNAI1 is upregulated during muscle regeneration and represses FGF21 and ATF3 expression by directly binding their promoters

    Get PDF
    During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1. Among these, key ER stress genes, such as Atf3, Ddit3/Chop, Hspa5/Bip, and Fgf21, a myokine involved in muscle differentiation, were strongly upregulated. Furthermore, by promoter mutant analysis and Chromatin immune precipitation assay, we demonstrated that SNAI1 represses Fgf21 and Atf3 in proliferating myoblasts by directly binding to multiple E boxes in their respective promoter regions. Together, these data describe a new regulatory mechanism of myogenic differentiation involving the direct repressive action of SNAI1 on ER stress and Fgf21 expression, ultimately contributing to maintaining the proliferative and undifferentiated state of myoblasts
    corecore