96 research outputs found

    Deficits in coordinated neuronal activity and network topology are striatal hallmarks in Huntington's disease.

    Get PDF
    Background. Network alterations underlying neurodegenerative diseases often precede symptoms and functional deficits. Thus, their early identification is central for improved prognosis. In Huntington's disease (HD), the cortico-striatal networks, involved in motor function processing, are the most compromised neural substrate. However, whether the network alterations are intrinsic of the striatum or the cortex is not fully understood. Results In order to identify early HD neural deficits, we characterized neuronal ensemble calcium activity and network topology of HD striatal and cortical cultures. We used large-scale calcium imaging combined with activity-based network inference analysis. We extracted collective activity events and inferred the topology of the neuronal network in cortical and striatal primary cultures from wild-type and R6/1 mouse model of HD. Striatal, but not cortical, HD networks displayed lower activity and a lessened ability to integrate information. GABAA receptor blockade in healthy and HD striatal cultures generated similar coordinated ensemble activity and network topology, highlighting that the excitatory component of striatal system is spared in HD. Conversely, NMDA receptor activation increased individual neuronal activity while coordinated activity became highly variable and undefined. Interestingly, by boosting NMDA activity, we rectified striatal HD network alterations. Conclusions. Overall, our integrative approach highlights striatal defective network integration capacity as a major contributor of basal ganglia dysfunction in HD and suggests that increased excitatory drive may serve as a potential intervention. In addition, our work provides a valuable tool to evaluate in vitro network recovery after treatment intervention in basal ganglia disorders

    Activity and high-order effective connectivity alterations in Sanfilippo C patient-specific neuronal networks

    Get PDF
    Induced pluripotent stem cell (iPSC) technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration

    Human pluripotent stem cell-derived neurons are functionally mature in vitro and integrate into the mouse striatum following transplantation

    Get PDF
    Human Pluripotent Stem Cells (hPSCs) are a powerful tool for modelling human development. In recent years, hPSCSs have become central in cell-based therapies for neurodegenerative diseases given their potential to replace affected neurons. However, directing hPSCs into specific neuronal types is complex and requires an accurate protocol that mimics endogenous neuronal development. Here we describe step-by-step a novel and fast feeder-free neuronal differentiation protocol to direct hPSCs onto mature forebrain neurons in 37 days in vitro (DIV). The protocol is grounded on a combination of specific morphogens, trophic and growth factors, ions, neurotransmitters and extracellular matrix elements. An induced hPSC line (Ctr-Q33) and an embryonic hPSC line (GEN-Q18) were used to reinforce the potential of the protocol. Neuronal activity was analysed by single-cell calcium imaging. At 8 DIV, we obtained a homogeneous population of hPSCs-derived neuroectodermal progenitors which self-arranged in bi-dimensional neural tube-like structures. At 16 DIV, we generated hPSC-derived neural progenitors (NPCs) with mostly subpallial identity along with a subpopulation of pallial NPCs. Terminal in vitro neuronal differentiation was confirmed by the expression of microtubule associated protein 2b (Map2b) by almost 100% of hPSC-derived neurons and the expression of specific-striatal neuronal markers including GABA, CTIP2 and DARPP-32. HPSC-derived neurons showed mature and functional phenotypes as they expressed synaptic markers, voltage-gated ion channels and neurotransmitter receptors. Neurons displayed diverse spontaneous activity patterns that were classified into three major groups, namely 'high', 'intermediate' and 'low' firing neurons. Finally, transplantation experiments in vivo showed that highly relevant, committed NPCs survived within mouse striatum for at least 3 months. NPCs embodied host environmental cues and differentiated into striatal medium size spiny neurons (MSNs), which successfully integrated into the endogenous circuitry without the appearance of any teratoma symptom. Altogether, present findings demonstrate the potential of this in vitro human neuronal differentiation protocol, which will bring new opportunities for the study of human neurodevelopment and neurodegeneration, and will open new avenues in cell-based therapies, cutting-edge pharmacological studies and toxicology

    Stochastic quorum percolation and noise focusing in neuronal networks

    No full text
    Recent experiments have shown that the spontaneous activity of developing dissociated neuronal cultures can be described as a process of highly inhomogeneous nucleation and front propagation due to the localization of noise activity, i.e., noise focusing. However, the basic understanding of the mechanisms of noise build-up leading to the nucleation remains an open fundamental problem. Here we present a minimal dynamical model called stochastic quorum percolation that can account for the observed phenomena, while providing a robust theoretical framework. The model reproduces the first- and second-order phase transitions of bursting dynamics and neuronal avalanches, respectively, and captures the profound effect metric correlations in the network topology can have on the dynamics. The application of our results to other systems such as in the propagation of infectious diseases and of rumors is discussed

    Criticality in Spreading Processes without Timescale Separation and the Critical Brain Hypothesis

    No full text
    Spreading processes on networks are ubiquitous in both human-made and natural systems. Understanding their behavior is of broad interest: from the control of epidemics to understanding brain dynamics. While in some cases there exists a clear separation of timescales between the propagation of a single spreading cascade and the initiation of the next—such that spreading can be modeled as directed percolation or a branching process—there are also processes for which this is not the case, such as spiking cascades in neural networks. For a large class of relevant network topologies, we show here that in such a scenario the nature of the overall spreading fundamentally changes. This change manifests itself in a transition between different universality classes of critical behavior, which determines the onset and the properties of neural activity turning epileptic, for example. We present analytical results in the mean-field limit, giving the critical line along which scale-free behavior can be observed. The two limits of this critical line correspond to the universality classes of directed and undirected percolation, respectively. Outside these two limits, this duality manifests itself in the appearance of critical exponents from the universality classes of both directed and undirected percolation. We find that the transition between these exponents is governed by a competition between merging and propagation of activity, and we identify an appropriate scaling relationship for the transition point. Finally, we show that commonly used measures, such as the branching ratio and dynamic susceptibility, fail to establish criticality in the absence of timescale separation, calling for a reanalysis of criticality in the brain

    Distributed context-dependent choice information in mouse posterior cortex

    Get PDF
    In the posterior cortex, which is involved in decision making, the strength and area specificity of choice signals are highly variable. Here the authors show that the representation of choice in the posterior area of the mouse brain is orthogonal to that of sensory and movement-related signals, with modulations determined by task features and cognitive demands

    Structural Elucidation of Poloxamer 237 and Poloxamer 237/Praziquantel Solid Dispersions: Impact of Poly(Vinylpyrrolidone) over Drug Recrystallization and Dissolution

    No full text
    Praziquantel (PZQ) is the recommended, effective, and safe treatment against all forms of schistosomiasis. Solid dispersions (SDs) in water-soluble polymers have been reported to increase solubility and bioavailability of poorly water-soluble drugs like PZQ, generally due to the amorphous form stabilization. In this work, poloxamer (PLX) 237 and poly(vinylpyrrolidone) (PVP) K30 were evaluated as potential carriers to revert PZQ crystallization. Binary and ternary SDs were prepared by the solvent evaporation method. PZQ solubility increased similarly with PLX either as binary physical mixtures or SDs. Such unpredicted data correlated well with crystalline PZQ and PLX as detected by solid-state NMR (ssNMR) and differential scanning calorimetry in those samples. Ternary PVP/PLX/PZQ SDs showed both ssNMR broad and narrow superimposed signals, thus revealing the presence of amorphous and crystalline PZQ, respectively, and exhibited the highest PZQ dissolution efficiency (up to 82% at 180 min). SDs with PVP provided a promising way to enhance solubility and dissolution rate of PZQ since PLX alone did not prevent recrystallization of amorphous PZQ. Based on ssNMR data, novel evidences on PLX structure and molecular dynamics were also obtained. As shown for the first time using ssNMR, propylene glycol and ethylene glycol constitute the PLX amorphous and crystalline components, respectively.Fil: Orlandi, Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Priotti, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Diogo, Hermínio P.. Instituto Superior Tecnico; PortugalFil: Leonardi, Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Salomon, Claudio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Nunes, Teresa G.. Instituto Superior Tecnico; Portuga
    • 

    corecore