287 research outputs found

    Field theory fo charged fluids and colloids

    Full text link
    A systematic field theory is presented for charged systems. The one-loop level corresponds to the classical Debye-H\"uckel (DH) theory, and exhibits the full hierarchy of multi-body correlations determined by pair-distribution functions given by the screened DH potential. Higher-loop corrections can lead to attractive pair interactions between colloids in asymmetric ionic environments. The free energy follows as a loop-wise expansion in half-integer powers of the density; the resulting two-phase demixing region shows pronounced deviations from DH theory for strongly charged colloids.Comment: 4 pages, 2 ps figs; new version corrects some minor typo

    The string model of the Cooper pair in the anisotropic superconductor

    Full text link
    The analogy between the Cooper pair in high temperature superconductor and the quark-antiquark pair in quantum chromodynamics (QCD) is proposed. In QCD the nonlinear chromodynamical field between a quark and an antiquark is confined to a tube. So we assume that there is the strong interaction between phonons which can confine them to some tube too. This tube is described using the nonlinear Schr\"odinger equation. We show that it has an infinite spectrum of axially symmetric (string) solutions with negative finite linear energy density. The one-dimensional nonlinear Schr\"odinger equation has a finite spectrum (hence, it has a steady-state) which describes the Cooper pair squezeed between anisotropy planes in the superconductor. It is shown that in this model the transition temperature is approximately 45 K.Comment: final version, Latex, 9p, to be published in Phys. Rev.

    Near-integrability and confinement for high-energy hadron-hadron collisions

    Full text link
    We investigate an effective Hamiltonian for QCD at large s, in which longitudinal gauge degrees of freedom are suppressed, but not eliminated. In an axial gauge the effective field theory is a set of coupled (1+1)-dimensional principal-chiral models, which are completely integrable. The confinement problem is solvable in this context, and we find the longitudinal and transverse string tensions with techniques already used for a similar Hamiltonian in (2+1)-dimensions. We find some a posteriori justification for the effective Hamiltonian as an eikonal approximation. Hadrons in this approximation consist of partons, which are quarks and soliton-like excitations of the sigma models. Diffractive hadron-hadron scattering appears primarily due to exchange of longitudinal flux between partons.Comment: Typographical errors corrected, language improved, reference adde

    A Soluble Free-Fermion Model in d Dimensions

    Full text link
    We consider a vertex model in d dimensions characterized by lines which run in a preferred direction. We show that this vertex model is soluble if the weights of vertices with intersecting lines are given by a free-fermion condition, and that a fugacity -1 is associated to each loop of lines. The solution is obtained by mapping the model into a dimer problem and by evaluating a Pfaffian. We also determine the critical point and the singular behavior of the free energy.Comment: 19 pages, REVTEX, 6 figure

    A meaningful expansion around detailed balance

    Full text link
    We consider Markovian dynamics modeling open mesoscopic systems which are driven away from detailed balance by a nonconservative force. A systematic expansion is obtained of the stationary distribution around an equilibrium reference, in orders of the nonequilibrium forcing. The first order around equilibrium has been known since the work of McLennan (1959), and involves the transient irreversible entropy flux. The expansion generalizes the McLennan formula to higher orders, complementing the entropy flux with the dynamical activity. The latter is more kinetic than thermodynamic and is a possible realization of Landauer's insight (1975) that, for nonequilibrium, the relative occupation of states also depends on the noise along possible escape routes. In that way nonlinear response around equilibrium can be meaningfully discussed in terms of two main quantities only, the entropy flux and the dynamical activity. The expansion makes mathematical sense as shown in the simplest cases from exponential ergodicity.Comment: 19 page

    Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation

    Full text link
    The adsorption of large ions from solution to a charged surface is investigated theoretically. A generalized Poisson--Boltzmann equation, which takes into account the finite size of the ions is presented. We obtain analytical expressions for the electrostatic potential and ion concentrations at the surface, leading to a modified Grahame equation. At high surface charge densities the ionic concentration saturates to its maximum value. Our results are in agreement with recent experiments.Comment: 4 pages, 2 figure

    Confinement in the Abelian-Higgs-type theories: string picture and field correlators

    Full text link
    Field correlators and the string representation are used as two complementary approaches for the description of confinement in the SU(N)-inspired dual Abelian-Higgs-type model. In the London limit of the simplest, SU(2)-inspired, model, bilocal electric field-strength correlators have been derived with accounting for the contributions to these averages produced by closed dual strings. The Debye screening in the plasma of such strings yields a novel long-range interaction between points lying on the contour of the Wilson loop. This interaction generates a Luescher-type term, even when one restrics oneself to the minimal surface, as it is usually done in the bilocal approximation to the stochastic vacuum model. Beyond the London limit, it has been shown that a modified interaction appears, which becomes reduced to the standard Yukawa one in the London limit. Finally, a string representation of the SU(N)-inspired model with the theta-term, in the London limit, can be constructed.Comment: 17 pages, no figures, REVTeX 4; Invited contribution to the collection of articles devoted to the 70th birthday of Yu.A. Simono

    Optimisation problems and replica symmetry breaking in finite connectivity spin-glasses

    Full text link
    A formalism capable of handling the first step of hierarchical replica symmetry breaking in finite-connectivity models is introduced. The emerging order parameter is claimed to be a probability distribution over the space of field distributions (or, equivalently magnetisation distributions) inside the cluster of states. The approach is shown to coincide with the previous works in the replica symmetric case and in the two limit cases m=0,1 where m is Parisi's break-point. As an application to the study of optimization problems, the ground-state properties of the random 3-Satisfiability problem are investigated and we present a first RSB solution improving replica symmetric results.Comment: 16 pages Revtex file, 1 figure; amended version with two new appendices; to be published in J.Phys.

    On the Topological Term in the String Representation of the Wilson Loop in the Dilute Instanton Gas

    Get PDF
    A topological term related to the number of self-intersections of the string world-sheet is shown to emerge in the string representation of the Wilson loop in the dilute instanton gas. The coupling constant of this term occurs to be proportional to the topological charge of the instanton gas under consideration.Comment: 4 pages, LaTeX, no figure

    QCD as a Quantum Link Model

    Get PDF
    QCD is constructed as a lattice gauge theory in which the elements of the link matrices are represented by non-commuting operators acting in a Hilbert space. The resulting quantum link model for QCD is formulated with a fifth Euclidean dimension, whose extent resembles the inverse gauge coupling of the resulting four-dimensional theory after dimensional reduction. The inclusion of quarks is natural in Shamir's variant of Kaplan's fermion method, which does not require fine-tuning to approach the chiral limit. A rishon representation in terms of fermionic constituents of the gluons is derived and the quantum link Hamiltonian for QCD with a U(N) gauge symmetry is expressed in terms of glueball, meson and constituent quark operators. The new formulation of QCD is promising both from an analytic and from a computational point of view.Comment: 27 pages, including three figures. ordinary LaTeX; Submitted to Nucl. Phys.
    • …
    corecore