354 research outputs found

    Bounding bubbles: the vertex representation of 3d Group Field Theory and the suppression of pseudo-manifolds

    Full text link
    Based on recent work on simplicial diffeomorphisms in colored group field theories, we develop a representation of the colored Boulatov model, in which the GFT fields depend on variables associated to vertices of the associated simplicial complex, as opposed to edges. On top of simplifying the action of diffeomorphisms, the main advantage of this representation is that the GFT Feynman graphs have a different stranded structure, which allows a direct identification of subgraphs associated to bubbles, and their evaluation is simplified drastically. As a first important application of this formulation, we derive new scaling bounds for the regularized amplitudes, organized in terms of the genera of the bubbles, and show how the pseudo-manifolds configurations appearing in the perturbative expansion are suppressed as compared to manifolds. Moreover, these bounds are proved to be optimal.Comment: 28 pages, 17 figures. Few typos fixed. Minor corrections in figure 6 and theorem

    Emergent non-commutative matter fields from Group Field Theory models of quantum spacetime

    Full text link
    We offer a perspective on some recent results obtained in the context of the group field theory approach to quantum gravity, on top of reviewing them briefly. These concern a natural mechanism for the emergence of non-commutative field theories for matter directly from the GFT action, in both 3 and 4 dimensions and in both Riemannian and Lorentzian signatures. As such they represent an important step, we argue, in bridging the gap between a quantum, discrete picture of a pre-geometric spacetime and the effective continuum geometric physics of gravity and matter, using ideas and tools from field theory and condensed matter analog gravity models, applied directly at the GFT level.Comment: 13 pages, no figures; uses JPConf style; contribution to the proceedings of the D.I.C.E. 2008 worksho

    Encoding simplicial quantum geometry in group field theories

    Full text link
    We show that a new symmetry requirement on the GFT field, in the context of an extended GFT formalism, involving both Lie algebra and group elements, leads, in 3d, to Feynman amplitudes with a simplicial path integral form based on the Regge action, to a proper relation between the discrete connection and the triad vectors appearing in it, and to a much more satisfactory and transparent encoding of simplicial geometry already at the level of the GFT action.Comment: 15 pages, 2 figures, RevTeX, references adde

    Group field theory with non-commutative metric variables

    Full text link
    We introduce a dual formulation of group field theories, making them a type of non-commutative field theories. In this formulation, the variables of the field are Lie algebra variables with a clear interpretation in terms of simplicial geometry. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. This formulation suggests ways to impose the simplicity constraints involved in BF formulations of 4d gravity directly at the level of the group field theory action. We illustrate this by giving a new GFT definition of the Barrett-Crane model.Comment: 4 pages; v3 published versio

    Quantum gravity as a group field theory: a sketch

    Full text link
    We give a very brief introduction to the group field theory approach to quantum gravity, a generalisation of matrix models for 2-dimensional quantum gravity to higher dimension, that has emerged recently from research in spin foam models.Comment: jpconf; 8 pages, 9 figures; to appear in the Proceedings of the Fourth Meeting on Constrained Dynamics and Quantum Gravity, Cala Gonone, Italy, September 12-16, 200

    Matter in Toy Dynamical Geometries

    Full text link
    One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect matter can affect dynamical geometries. Using a simple model, it is shown that matter can effectively mold a geometry into an isotropic configuration. Implications for "atomistic" models of quantum geometry are briefly discussed.Comment: 8 pages, 1 figure, paper presented at DICE 200

    Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity

    Full text link
    In a recent work, a dual formulation of group field theories as non-commutative quantum field theories has been proposed, providing an exact duality between spin foam models and non-commutative simplicial path integrals for constrained BF theories. In light of this new framework, we define a model for 4d gravity which includes the Immirzi parameter gamma. It reproduces the Barrett-Crane amplitudes when gamma goes to infinity, but differs from existing models otherwise; in particular it does not require any rationality condition for gamma. We formulate the amplitudes both as BF simplicial path integrals with explicit non-commutative B variables, and in spin foam form in terms of Wigner 15j-symbols. Finally, we briefly discuss the correlation between neighboring simplices, often argued to be a problematic feature, for example, in the Barrett-Crane model.Comment: 26 pages, 1 figur

    Local gauge theory and coarse graining

    Full text link
    Within the discrete gauge theory which is the basis of spin foam models, the problem of macroscopically faithful coarse graining is studied. Macroscopic data is identified; it contains the holonomy evaluation along a discrete set of loops and the homotopy classes of certain maps. When two configurations share this data they are related by a local deformation. The interpretation is that such configurations differ by "microscopic details". In many cases the homotopy type of the relevant maps is trivial for every connection; two important cases in which the homotopy data is composed by a set of integer numbers are: (i) a two dimensional base manifold and structure group U(1), (ii) a four dimensional base manifold and structure group SU(2). These cases are relevant for spin foam models of two dimensional gravity and four dimensional gravity respectively. This result suggests that if spin foam models for two-dimensional and four-dimensional gravity are modified to include all the relevant macroscopic degrees of freedom -the complete collection of macroscopic variables necessary to ensure faithful coarse graining-, then they could provide appropriate effective theories at a given scale.Comment: Based on talk given at Loops 11-Madri

    Coupling of spacetime atoms and spin foam renormalisation from group field theory

    Full text link
    We study the issue of coupling among 4-simplices in the context of spin foam models obtained from a group field theory formalism. We construct a generalisation of the Barrett-Crane model in which an additional coupling between the normals to tetrahedra, as defined in different 4-simplices that share them, is present. This is realised through an extension of the usual field over the group manifold to a five argument one. We define a specific model in which this coupling is parametrised by an additional real parameter that allows to tune the degree of locality of the resulting model, interpolating between the usual Barrett-Crane model and a flat BF-type one. Moreover, we define a further extension of the group field theory formalism in which the coupling parameter enters as a new variable of the field, and the action presents derivative terms that lead to modified classical equations of motion. Finally, we discuss the issue of renormalisation of spin foam models, and how the new coupled model can be of help regarding this.Comment: RevTeX, 18 pages, no figure

    Non-commutative flux representation for loop quantum gravity

    Get PDF
    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by *-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.Comment: 12 pages, matches published versio
    corecore