354 research outputs found
Bounding bubbles: the vertex representation of 3d Group Field Theory and the suppression of pseudo-manifolds
Based on recent work on simplicial diffeomorphisms in colored group field
theories, we develop a representation of the colored Boulatov model, in which
the GFT fields depend on variables associated to vertices of the associated
simplicial complex, as opposed to edges. On top of simplifying the action of
diffeomorphisms, the main advantage of this representation is that the GFT
Feynman graphs have a different stranded structure, which allows a direct
identification of subgraphs associated to bubbles, and their evaluation is
simplified drastically. As a first important application of this formulation,
we derive new scaling bounds for the regularized amplitudes, organized in terms
of the genera of the bubbles, and show how the pseudo-manifolds configurations
appearing in the perturbative expansion are suppressed as compared to
manifolds. Moreover, these bounds are proved to be optimal.Comment: 28 pages, 17 figures. Few typos fixed. Minor corrections in figure 6
and theorem
Emergent non-commutative matter fields from Group Field Theory models of quantum spacetime
We offer a perspective on some recent results obtained in the context of the
group field theory approach to quantum gravity, on top of reviewing them
briefly. These concern a natural mechanism for the emergence of non-commutative
field theories for matter directly from the GFT action, in both 3 and 4
dimensions and in both Riemannian and Lorentzian signatures. As such they
represent an important step, we argue, in bridging the gap between a quantum,
discrete picture of a pre-geometric spacetime and the effective continuum
geometric physics of gravity and matter, using ideas and tools from field
theory and condensed matter analog gravity models, applied directly at the GFT
level.Comment: 13 pages, no figures; uses JPConf style; contribution to the
proceedings of the D.I.C.E. 2008 worksho
Encoding simplicial quantum geometry in group field theories
We show that a new symmetry requirement on the GFT field, in the context of
an extended GFT formalism, involving both Lie algebra and group elements,
leads, in 3d, to Feynman amplitudes with a simplicial path integral form based
on the Regge action, to a proper relation between the discrete connection and
the triad vectors appearing in it, and to a much more satisfactory and
transparent encoding of simplicial geometry already at the level of the GFT
action.Comment: 15 pages, 2 figures, RevTeX, references adde
Group field theory with non-commutative metric variables
We introduce a dual formulation of group field theories, making them a type
of non-commutative field theories. In this formulation, the variables of the
field are Lie algebra variables with a clear interpretation in terms of
simplicial geometry. For Ooguri-type models, the Feynman amplitudes are
simplicial path integrals for BF theories. This formulation suggests ways to
impose the simplicity constraints involved in BF formulations of 4d gravity
directly at the level of the group field theory action. We illustrate this by
giving a new GFT definition of the Barrett-Crane model.Comment: 4 pages; v3 published versio
Quantum gravity as a group field theory: a sketch
We give a very brief introduction to the group field theory approach to
quantum gravity, a generalisation of matrix models for 2-dimensional quantum
gravity to higher dimension, that has emerged recently from research in spin
foam models.Comment: jpconf; 8 pages, 9 figures; to appear in the Proceedings of the
Fourth Meeting on Constrained Dynamics and Quantum Gravity, Cala Gonone,
Italy, September 12-16, 200
Matter in Toy Dynamical Geometries
One of the objectives of theories describing quantum dynamical geometry is to
compute expectation values of geometrical observables. The results of such
computations can be affected by whether or not matter is taken into account. It
is thus important to understand to what extent and to what effect matter can
affect dynamical geometries. Using a simple model, it is shown that matter can
effectively mold a geometry into an isotropic configuration. Implications for
"atomistic" models of quantum geometry are briefly discussed.Comment: 8 pages, 1 figure, paper presented at DICE 200
Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity
In a recent work, a dual formulation of group field theories as
non-commutative quantum field theories has been proposed, providing an exact
duality between spin foam models and non-commutative simplicial path integrals
for constrained BF theories. In light of this new framework, we define a model
for 4d gravity which includes the Immirzi parameter gamma. It reproduces the
Barrett-Crane amplitudes when gamma goes to infinity, but differs from existing
models otherwise; in particular it does not require any rationality condition
for gamma. We formulate the amplitudes both as BF simplicial path integrals
with explicit non-commutative B variables, and in spin foam form in terms of
Wigner 15j-symbols. Finally, we briefly discuss the correlation between
neighboring simplices, often argued to be a problematic feature, for example,
in the Barrett-Crane model.Comment: 26 pages, 1 figur
Local gauge theory and coarse graining
Within the discrete gauge theory which is the basis of spin foam models, the
problem of macroscopically faithful coarse graining is studied. Macroscopic
data is identified; it contains the holonomy evaluation along a discrete set of
loops and the homotopy classes of certain maps. When two configurations share
this data they are related by a local deformation. The interpretation is that
such configurations differ by "microscopic details". In many cases the homotopy
type of the relevant maps is trivial for every connection; two important cases
in which the homotopy data is composed by a set of integer numbers are: (i) a
two dimensional base manifold and structure group U(1), (ii) a four dimensional
base manifold and structure group SU(2). These cases are relevant for spin foam
models of two dimensional gravity and four dimensional gravity respectively.
This result suggests that if spin foam models for two-dimensional and
four-dimensional gravity are modified to include all the relevant macroscopic
degrees of freedom -the complete collection of macroscopic variables necessary
to ensure faithful coarse graining-, then they could provide appropriate
effective theories at a given scale.Comment: Based on talk given at Loops 11-Madri
Coupling of spacetime atoms and spin foam renormalisation from group field theory
We study the issue of coupling among 4-simplices in the context of spin foam
models obtained from a group field theory formalism. We construct a
generalisation of the Barrett-Crane model in which an additional coupling
between the normals to tetrahedra, as defined in different 4-simplices that
share them, is present. This is realised through an extension of the usual
field over the group manifold to a five argument one. We define a specific
model in which this coupling is parametrised by an additional real parameter
that allows to tune the degree of locality of the resulting model,
interpolating between the usual Barrett-Crane model and a flat BF-type one.
Moreover, we define a further extension of the group field theory formalism in
which the coupling parameter enters as a new variable of the field, and the
action presents derivative terms that lead to modified classical equations of
motion. Finally, we discuss the issue of renormalisation of spin foam models,
and how the new coupled model can be of help regarding this.Comment: RevTeX, 18 pages, no figure
Non-commutative flux representation for loop quantum gravity
The Hilbert space of loop quantum gravity is usually described in terms of
cylindrical functionals of the gauge connection, the electric fluxes acting as
non-commuting derivation operators. It has long been believed that this
non-commutativity prevents a dual flux (or triad) representation of loop
quantum gravity to exist. We show here, instead, that such a representation can
be explicitly defined, by means of a non-commutative Fourier transform defined
on the loop gravity state space. In this dual representation, flux operators
act by *-multiplication and holonomy operators act by translation. We describe
the gauge invariant dual states and discuss their geometrical meaning. Finally,
we apply the construction to the simpler case of a U(1) gauge group and compare
the resulting flux representation with the triad representation used in loop
quantum cosmology.Comment: 12 pages, matches published versio
- …
