1,279 research outputs found

    A Primal-Dual Quasi-Newton Method for Constrained Optimization

    Get PDF
    One of the most important developments in nonlinear constrained optimization in recent years has been the recursive quadratic programming (RQP) method suggested by Wilson, Han, Powell and many other researchers. It is clear that the role of the auxiliary quadratic programming problem is to calculate (implicitly) the inverse Hessian of the dual objective function. We describe the Hessian of the Lagrangian and that of the dual objective function as the primal Hessian and the dual Hessian, respectively. In this paper, a new method for constrained optimization, called the primal-dual quasi-Newton method, is proposed. The main feature of this method is that it improves (explicitly) both the primal Hessian and the dual Hessian using quasi-Newton methods. Several variants of the primal-dual quasi-Newton method are possible: the properties of these methods are described and the computational results obtained for some test problems are given

    Experimental Generation of Carcinoma-Associated Fibroblasts (CAFs) from Human Mammary Fibroblasts

    Get PDF
    Carcinomas are complex tissues comprised of neoplastic cells and a non-cancerous compartment referred to as the 'stroma'. The stroma consists of extracellular matrix (ECM) and a variety of mesenchymal cells, including fibroblasts, myofibroblasts, endothelial cells, pericytes and leukocytes(1-3)

    Pressure-induced structural transitions in MgH2{_2}

    Full text link
    The stability of MgH2_2 has been studied up to 20~GPa using density-functional total-energy calculations. At ambient pressure α\alpha-MgH2{_2} takes a TiO2_2-rutile-type structure. α\alpha-MgH2_2 is predicted to transform into γ\gamma-MgH2{_2} at 0.39~GPa. The calculated structural data for α\alpha- and γ\gamma-MgH2{_2} are in very good agreement with experimental values. At equilibrium the energy difference between these modifications is very small, and as a result both phases coexist in a certain volume and pressure field. Above 3.84~GPa γ\gamma-MgH2{_2} transforms into β\beta-MgH2{_2}; consistent with experimental findings. Two further transformations have been identified at still higher pressure: i) β\beta- to δ\delta-MgH2{_2} at 6.73 GPa and (ii) δ\delta- to ϵ\epsilon-MgH2{_2} at 10.26~GPa.Comment: 4 pages, 4 figure

    Complex transition metal hydrides incorporating ionic hydrogen: Synthesis and characterization of Na2Mg2FeH8 and Na2Mg2RuH8

    Get PDF
    A new class of quaternary complex transition metal hydrides (Na2Mg2TH8 (T = Fe, Ru)) have been synthesized and their structures determined by combined synchrotron radiation X-ray and powder neutron diffraction. The compounds can be considered as a link between ionic and complex hydrides in terms of incorporating independently coordinated ionic and covalent hydrogen. These novel isostructural complex transition metal hydrides crystallize in the orthorhombic space group Pbam, where the octahedral complex hydride anion is surrounded by a cubic array of four Mg2+ and four Na+ cations, forming distinct two-dimensional layers. An intriguing feature of these materials is the distorted octahedral coordination of the isolated H− anions by four Na+ and two Mg2+ cations, which form layers between the transition metal containing layers. The vibrational modes of the H− anions and complex hydride anion are independently observed for the first time in a quaternary complex transition metal hydride system by Raman and IR spectroscopy

    123I-MIBG cardiac uptake and smell identification in parkinsonian patients with LRRK2 mutations

    Get PDF
    Reduced uptake of 123I- metaiodobenzylguanidine (MIBG) on cardiac gammagraphy and impaired odor identification are markers of neurodegenerative diseases with Lewy bodies (LB) as a pathological hallmark, such as idiopathic Parkinson’s disease (IPD). LRRK2 patients present with a clinical syndrome indistinguishable from IPD, but LB have not been found in some cases. Patients with such mutations could behave differently than patients with IPD with respect to MIBG cardiac uptake and olfaction. We studied 14 LRRK2 patients, 14 IPD patients matched by age, gender, disease duration and severity, and 13 age and gender matched control subjects. Olfaction was analyzed through the University of Pennsylvania Smell Identification Test (UPSIT). MIBG cardiac uptake was evaluated through the H/M ratio. The late H/M was 1.44 ± 0.31 for LRRK2 patients, 1.19 ± 0.15 for PD patients, and 1.67 ± 0.16 for control subjects. LRRK2 patients presented lower but not statistically significant MIBG cardiac uptake than controls (p = 0.08) and significant higher uptake than PD patients (p = 0.04). UPSIT mean scores were 21.5 ± 7.3 for LRRK2 patients, 18.7 ± 6.2 for IPD patients and 29.7 ± 5.7 for control subjects. UPSIT score was lower in both LRRK2 and PD than in controls. In LRRK2 patients a positive correlation was found between myocardial MIBG uptake and UPSIT scores, (R = 0.801, p < 0.001). In LRRK2 patients, MIBG cardiac uptake was less impaired than in PD; a positive correlation between MIBG cardiac uptake and UPSIT scores was observed. As MIBG cardiac reduced uptake and impaired odor identification are markers of LB pathology, this findings may represent neuropathological heterogeneity among LRRK2 patients

    Complement inhibitor CSMD1 acts as tumor suppressor in human breast cancer

    Get PDF
    Human CUB and Sushi multiple domains 1 (CSMD1) is a membrane-bound complement inhibitor suggested to act as a putative tumor suppressor gene, since allelic loss of this region encompassing 8p23 including CSMD1 characterizes various malignancies. Here, we assessed the role of CSMD1 as a tumor suppressor gene in the development of breast cancer in vitro and in vivo. We found that human breast tumor tissues expressed CSMD1 at lower levels compared to that in normal mammary tissues. The decreased expression of CSMD1 was linked to a shorter overall survival of breast cancer patients. We also revealed that expression of CSMD1 in human breast cancer cells BT-20 and MDA-MB-231 significantly inhibited their malignant phenotypes, including migration, adhesion and invasion. Conversely, stable silencing of CSMD1 expression in T47D cells enhanced cancer cell migratory, adherent and clonogenic abilities. Moreover, expression of CSMD1 in the highly invasive MDA-MB-231 cells diminished their signaling potential as well as their stem cell-like properties as assessed by measurement of aldehyde dehydrogenase activity. In a xenograft model, expression of CSMD1 blocked the ability of cancer cells to metastasize to secondary sites in vivo, likely via inhibiting local invasion but not the extravasation into distant tissues. Taken together, these findings demonstrate the role of CSMD1 as a tumor suppressor gene in breast cancer

    Superconductivity in a new layered triangular-lattice system Li2IrSi2

    Get PDF
    We report on the crystal structure and superconducting properties of a novel iridium-silicide, namely Li2IrSi2. It has a Ag2NiO2-type structure (space group R-3m) with the lattice parameters a = 4.028 30(6) Å and c = 13.161 80(15) Å. The crystal structure comprises IrSi2 and double Li layers stacked alternately along the c-axis. The IrSi2 layer includes a two-dimensional Ir equilateral-triangular lattice. Electrical resistivity and static magnetic measurements revealed that Li2IrSi2 is a type-II superconductor with critical temperature (Tc) of 3.3 K. We estimated the following superconducting parameters: lower critical field Hc1(0) ~ 42 Oe, upper critical field Hc2(0) ~ 1.7 kOe, penetration depth λ0 ~ 265 nm, coherence length ξ0 ~ 44 nm, and Ginzburg–Landau parameter κGL ~ 6.02. The specific-heat data suggested that superconductivity in Li2IrSi2 could be attributed to weak-coupling Cooper pairs
    corecore