65 research outputs found

    Charge and current oscillations in Fractional quantum Hall systems with edges

    Full text link
    Stationary solutions of the Chern-Simons effective field theory for the fractional quantum Hall systems with edges are presented for Hall bar, disk and annulus. In the infinitely long Hall bar geometry (non compact case), the charge density is shown to be monotonic inside the sample. In sharp contrast, spatial oscillatory modes of charge density are found for the two circular geometries, which indicate that in systems with compact geometry, charge and current exist also far from the edges.Comment: 16 pages, 6 figures Revte

    Distribution of spectral weight in a system with disordered stripes

    Full text link
    The ``band-structure'' of a disordered stripe array is computed and compared, at a qualitative level, to angle resolved photoemission experiments on the cuprate high temperature superconductors. The low-energy states are found to be strongly localized transverse to the stripe direction, so the electron dynamics is strictly one-dimensional (along the stripe). Despite this, aspects of the two dimensional band-structure Fermi surface are still vividly apparent.Comment: 10 pages, 11 figure

    From the Chern-Simons theory for the fractional quantum Hall effect to the Luttinger model of its edges

    Full text link
    The chiral Luttinger model for the edges of the fractional quantum Hall effect is obtained as the low energy limit of the Chern-Simons theory for the two dimensional system. In particular we recover the Kac-Moody algebra for the creation and annihilation operators of the edge density waves and the bosonization formula for the electronic operator at the edge.Comment: 4 pages, LaTeX, 1 Postscript figure include

    Interacting Electrons on a Fluctuating String

    Full text link
    We consider the problem of interacting electrons constrained to move on a fluctuating one-dimensional string. An effective low-energy theory for the electrons is derived by integrating out the string degrees of freedom to lowest order in the inverse of the string tension and mass density, which are assumed to be large. We obtain expressions for the tunneling density of states, the spectral function and the optical conductivity of the system. Possible connections with the phenomenology of the cuprate high temperature superconductors are discussed.Comment: 14 pages, 1 figur

    Photoemission Spectroscopy and the Unusually Robust One Dimensional Physics of Lithium Purple Bronze

    Full text link
    Temperature dependent photoemission spectroscopy in Li0.9Mo6O17 contributes to evidence for one dimensional physics that is unusually robust. Three generic characteristics of the Luttinger liquid are observed, power law behavior of the k-integrated spectral function down to temperatures just above the superconducting transition, k-resolved lineshapes that show holon and spinon features, and quantum critical (QC) scaling in the lineshapes. Departures of the lineshapes and the scaling from expectations in the Tomonaga Luttinger model can be partially described by a phenomenological momentum broadening that is presented and discussed. The possibility that some form of 1d physics obtains even down to the superconducting transition temperature is assessed.Comment: submitted to JPCM, Special issue article "Physics in one dimension

    Probing Spin-Charge Separation in Tunnel-Coupled Parallel Quantum Wires

    Full text link
    Interactions in one-dimensional (1D) electron systems are expected to cause a dynamical separation of electronic spin and charge degrees of freedom. A promising system for experimental observation of this non-Fermi-liquid effect consists of two quantum wires coupled via tunneling through an extended uniform barrier. Here we consider the minimal model of an interacting 1D electron system exhibiting spin-charge separation and calculate the differential tunneling conductance as well as the density-density response function. Both quantities exhibit distinct strong features arising from spin-charge separation. Our analysis of these features within the minimal model neglects interactions between electrons of opposite chirality and applies therefore directly to chiral 1D electron systems realized, e.g., at the edge of integer quantum-Hall systems. Physical insight gained from our results is useful for interpreting current experiment in quantum wires as our main conclusions still apply with nonchiral interactions present. In particular, we discuss the effect of charging due to applied voltages, and the possibility to observe spin-charge separation in a time-resolved experiment.Comment: 9 pages, 3 figures, expanded version with many detail

    Using strain to uncover the interplay between two- and three-dimensional charge density waves in high-temperature superconducting YBa<sub>2</sub>Cu<sub>3</sub>O<sub>y</sub>

    Get PDF
    Uniaxial pressure provides an efficient approach to control charge density waves in YBa2Cu3Oy. It can enhance the correlation volume of ubiquitous short-range two-dimensional charge-density-wave correlations, and induces a long-range three-dimensional charge density wave, otherwise only accessible at large magnetic fields. Here, we use x-ray diffraction to study the strain dependence of these charge density waves and uncover direct evidence for a form of competition between them. We show that this interplay is qualitatively described by including strain effects in a nonlinear sigma model of competing superconducting and charge-density-wave orders. Our analysis suggests that strain stabilizes the 3D charge density wave in the regions between disorder-pinned domains of 2D charge density waves, and that the two orders compete at the boundaries of these domains. No signatures of discommensurations nor of pair density waves are observed. From a broader perspective, our results underscore the potential of strain tuning as a powerful tool for probing competing orders in quantum materials

    On the Relationship Between the Critical Temperature and the London Penetration Depth in Layered Organic Superconductors

    Full text link
    We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz--Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.Comment: 5 pages, 1 figur

    Theory of the Quantum Hall Smectic Phase II: Microscopic Theory

    Full text link
    We present a microscopic derivation of the hydrodynamic theory of the Quantum Hall smectic or stripe phase of a two-dimensional electron gas in a large magnetic field. The effective action of the low energy is derived here from a microscopic picture by integrating out high energy excitations with a scale of the order the cyclotron energy.The remaining low-energy theory can be expressed in terms of two canonically conjugate sets of degrees of freedom: the displacement field, that describes the fluctuations of the shapes of the stripes, and the local charge fluctuations on each stripe.Comment: 20 pages, RevTex, 3 figures, second part of cond-mat/0105448 New and improved Introduction. Final version as it will appear in Physical Review

    Phase Separation Models for Cuprate Stripe Arrays

    Full text link
    An electronic phase separation model provides a natural explanation for a large variety of experimental results in the cuprates, including evidence for both stripes and larger domains, and a termination of the phase separation in the slightly overdoped regime, when the average hole density equals that on the charged stripes. Several models are presented for charged stripes, showing how density waves, superconductivity, and strong correlations compete with quantum size effects (QSEs) in narrow stripes. The energy bands associated with the charged stripes develop in the middle of the Mott gap, and the splitting of these bands can be understood by considering the QSE on a single ladder.Comment: significant revisions: includes island phase, 16 eps figures, revte
    • …
    corecore