6 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Predicting depression onset in young people based on clinical, cognitive, environmental, and neurobiological data

    Get PDF
    BackgroundAdolescent onset of depression is associated with long-lasting negative consequences. Identifying adolescents at risk for developing depression would enable the monitoring of risk factors and the development of early intervention strategies. Using machine learning to combine several risk factors from multiple modalities might allow prediction of depression onset at the individual level. MethodsA subsample of a multisite longitudinal study in adolescents, the IMAGEN study, was used to predict future (subthreshold) major depressive disorder onset in healthy adolescents. Based on 2-year and 5-year follow-up data, participants were grouped into the following: 1) those developing a diagnosis of major depressive disorder or subthreshold major depressive disorder and 2) healthy control subjects. Baseline measurements of 145 variables from different modalities (clinical, cognitive, environmental, and structural magnetic resonance imaging) at age 14 years were used as input to penalized logistic regression (with different levels of penalization) to predict depression onset in a training dataset (n = 407). The features contributing the highest to the prediction were validated in an independent hold-out sample (three independent IMAGEN sites; n = 137). ResultsThe area under the receiver operating characteristic curve for predicting depression onset ranged between 0.70 and 0.72 in the training dataset. Baseline severity of depressive symptoms, female sex, neuroticism, stressful life events, and surface area of the supramarginal gyrus contributed most to the predictive model and predicted onset of depression, with an area under the receiver operating characteristic curve between 0.68 and 0.72 in the independent validation sample. ConclusionsThis study showed that depression onset in adolescents can be predicted based on a combination multimodal data of clinical characteristics, life events, personality traits, and brain structure variables.</div

    Predicting depression onset in young people based on clinical, cognitive, environmental, and neurobiological data

    No full text
    BackgroundAdolescent onset of depression is associated with long-lasting negative consequences. Identifying adolescents at risk for developing depression would enable the monitoring of risk factors and the development of early intervention strategies. Using machine learning to combine several risk factors from multiple modalities might allow prediction of depression onset at the individual level. MethodsA subsample of a multisite longitudinal study in adolescents, the IMAGEN study, was used to predict future (subthreshold) major depressive disorder onset in healthy adolescents. Based on 2-year and 5-year follow-up data, participants were grouped into the following: 1) those developing a diagnosis of major depressive disorder or subthreshold major depressive disorder and 2) healthy control subjects. Baseline measurements of 145 variables from different modalities (clinical, cognitive, environmental, and structural magnetic resonance imaging) at age 14 years were used as input to penalized logistic regression (with different levels of penalization) to predict depression onset in a training dataset (n = 407). The features contributing the highest to the prediction were validated in an independent hold-out sample (three independent IMAGEN sites; n = 137). ResultsThe area under the receiver operating characteristic curve for predicting depression onset ranged between 0.70 and 0.72 in the training dataset. Baseline severity of depressive symptoms, female sex, neuroticism, stressful life events, and surface area of the supramarginal gyrus contributed most to the predictive model and predicted onset of depression, with an area under the receiver operating characteristic curve between 0.68 and 0.72 in the independent validation sample. ConclusionsThis study showed that depression onset in adolescents can be predicted based on a combination multimodal data of clinical characteristics, life events, personality traits, and brain structure variables.Stress and Psychopatholog

    Global urbanicity is associated with brain and behaviour in young people

    No full text
    Urbanicity is a growing environmental challenge for mental health. Here, we investigate correlations of urbanicity with brain structure and function, neuropsychology and mental illness symptoms in young people from China and Europe (total n = 3,867). We developed a remote-sensing satellite measure (UrbanSat) to quantify population density at any point on Earth. UrbanSat estimates of urbanicity were correlated with brain volume, cortical surface area and brain network connectivity in the medial prefrontal cortex and cerebellum. UrbanSat was also associated with perspective-taking and depression symptoms, and this was mediated by neural variables. Urbanicity effects were greatest when urban exposure occurred in childhood for the cerebellum, and from childhood to adolescence for the prefrontal cortex. As UrbanSat can be generalized to different geographies, it may enable assessments of correlations of urbanicity with mental illness and resilience globally
    corecore