8 research outputs found

    Improved Response to nab-Paclitaxel Compared with Cremophor-Solubilized Paclitaxel is Independent of Secreted Protein Acidic and Rich in Cysteine Expression in Non-Small Cell Lung Cancer

    Get PDF
    Background:The secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that is produced by tumor and/or neighboring stroma. SPARC expression is thought to facilitate the intracellular accumulation of nanoparticle albumin-bound paclitaxel (nab-paclitaxel, abraxane [ABX]). Gene hypermethylation is a common mechanism for loss of SPARC expression in non-small cell lung cancer (NSCLC). We aim to demonstrate the role of SPARC expression as biomarker for treatment selection using ABX in NSCLC and to evaluate the presence of synergistic antitumor effect when a demethylating agent is combined with ABX.Methods:We analyzed the SPARC messenger RNA expression and SPARC gene methylation status in 13 NSCLC cell lines and 22 minimally passaged patient-derived (PD) NSCLC tumors using real-time (RT) polymerase chain reaction. The effect of ABX on tumor growth was compared with cremophor-solubilized paclitaxel (taxol) in severe combined immunodeficiency mice bearing SPARC-positive PD xenografts. The effect of pretreatment with a demethylating agent, 5-Aza-2′-deoxycytidine (DEC) in SPARC-negative tumors was assessed.Results:SPARC expression was weak to absent in 62% of established NSCLC cell lines and 68% of PD NSCLC tumor xenografts. SPARC expression could be up-regulated/restored by DEC treatment in both SPARC-negative cell lines and PD xenografts in vitro and in vivo. ABX demonstrated better antitumor efficacy than equitoxic dose of taxol in SPARC-expressing xenografts and some SPARC-negative xenografts. At equimolar doses in vitro, there was similar increased cytotoxicity on DEC pretreatment with either ABX or taxol in SPARC-negative cell lines. At equitoxic doses, there was similar additive antitumor activity of DEC with either ABX or taxol in SPARC-negative PD xenografts.Conclusion:Endogenous SPARC status is somewhat uncorrelated with response to ABX in NSCLC. The greater antitumor effect of ABX compared with equitoxic dose of taxol observed in SPARC-expressing NSCLC tumors can also be seen in some SPARC-negative tumors. DEC pretreatment similarly enhanced antitumor activity with either ABX or taxol in SPARC-negative tumors

    GLUTATHIONE S

    No full text

    Glutathione Stransferase omega 1 and omega 2 pharmacogenomics. Drug Metab Dispos

    No full text
    ABSTRACT Glutathione S-transferase omega 1 and omega 2 (GSTO1 and GSTO2) catalyze monomethyl arsenate reduction, the rate-limiting reaction in arsenic biotransformation. As a step toward pharmacogenomic studies of these phase II enzymes, we resequenced human GSTO1 and GSTO2 using DNA samples from four ethnic groups. We identified 31 and 66 polymorphisms in GSTO1 and GSTO2, respectively, with 4 nonsynonymous coding single nucleotide polymorphisms (cSNPs) in each gene. There were striking variations among ethnic groups in polymorphism frequencies and types. Expression constructs were created for all eight nonsynonymous cSNPs as well as a deletion of codon 155 in GSTO1, and those constructs were used to transfect COS-1 cells. Quantitative Western blot analysis, after correction for transfection efficiency, showed a reduction in protein level of greater than 50% for the GSTO1 Tyr32 variant allozyme when compared with wild type (WT), while levels for the Asp140, Lys208, Val236 and codon 155 deletion variant constructs were similar to that of the WT. For GSTO2, the Tyr130 and Ile158 variant allozymes showed 50% and 84% reductions in levels of expression, respectively, when compared to WT, while the Ile41 and Asp142 allozymes displayed levels similar to that of WT GSTO2. Rabbit reticulocyte lysate (RRL) degradation studies showed that the GSTO1 Tyr32 and the GSTO2 Tyr130, Ile158 and Asp142/Ile158 variant allozymes were degraded more rapidly than were their respective WT allozymes. These observations raise the possibility of functionally significant pharmacogenomic variation in the expression and function of GSTO1 and GSTO2
    corecore