46 research outputs found

    The Hydrophobic Core of Twin-Arginine Signal Sequences Orchestrates Specific Binding to Tat-Pathway Related Chaperones

    Get PDF
    Redox enzyme maturation proteins (REMPs) bind pre-proteins destined for translocation across the bacterial cytoplasmic membrane via the twin-arginine translocation system and enable the enzymatic incorporation of complex cofactors. Most REMPs recognize one specific pre-protein. The recognition site usually resides in the N-terminal signal sequence. REMP binding protects signal peptides against degradation by proteases. REMPs are also believed to prevent binding of immature pre-proteins to the translocon. The main aim of this work was to better understand the interaction between REMPs and substrate signal sequences. Two REMPs were investigated: DmsD (specific for dimethylsulfoxide reductase, DmsA) and TorD (specific for trimethylamine N-oxide reductase, TorA). Green fluorescent protein (GFP) was genetically fused behind the signal sequences of TorA and DmsA. This ensures native behavior of the respective signal sequence and excludes any effects mediated by the mature domain of the pre-protein. Surface plasmon resonance analysis revealed that these chimeric pre-proteins specifically bind to the cognate REMP. Furthermore, the region of the signal sequence that is responsible for specific binding to the corresponding REMP was identified by creating region-swapped chimeric signal sequences, containing parts of both the TorA and DmsA signal sequences. Surprisingly, specificity is not encoded in the highly variable positively charged N-terminal region of the signal sequence, but in the more similar hydrophobic C-terminal parts. Interestingly, binding of DmsD to its model substrate reduced membrane binding of the pre-protein. This property could link REMP-signal peptide binding to its reported proofreading function

    Visualizing Interactions along the Escherichia coli Twin-Arginine Translocation Pathway Using Protein Fragment Complementation

    Get PDF
    The twin-arginine translocation (Tat) pathway is well known for its ability to export fully folded substrate proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Studies of this mechanism in Escherichia coli have identified numerous transient protein-protein interactions that guide export-competent proteins through the Tat pathway. To visualize these interactions, we have adapted bimolecular fluorescence complementation (BiFC) to detect protein-protein interactions along the Tat pathway of living cells. Fragments of the yellow fluorescent protein (YFP) were fused to soluble and transmembrane factors that participate in the translocation process including Tat substrates, Tat-specific proofreading chaperones and the integral membrane proteins TatABC that form the translocase. Fluorescence analysis of these YFP chimeras revealed a wide range of interactions such as the one between the Tat substrate dimethyl sulfoxide reductase (DmsA) and its dedicated proofreading chaperone DmsD. In addition, BiFC analysis illuminated homo- and hetero-oligomeric complexes of the TatA, TatB and TatC integral membrane proteins that were consistent with the current model of translocase assembly. In the case of TatBC assemblies, we provide the first evidence that these complexes are co-localized at the cell poles. Finally, we used this BiFC approach to capture interactions between the putative Tat receptor complex formed by TatBC and the DmsA substrate or its dedicated chaperone DmsD. Our results demonstrate that BiFC is a powerful approach for studying cytoplasmic and inner membrane interactions underlying bacterial secretory pathways

    Nutrition value of beans and lentils in rats

    No full text
    International audienc

    Composition of common bean Esnjevec and lentil verte du puy and their nutrition value for growing rats

    No full text
    *Unité de Nutrition et Métabolisme Protéique, INRA Centre de Clermont-Ferrand-Theix Diffusion du document : Unité de Nutrition et Métabolisme Protéique, INRA Centre de Clermont-Ferrand-TheixInternational audienc

    Common Dyes Used to Determine Bacterial Polysaccharides on Agar Are Affected by Medium Acidification

    No full text
    In this work the effects of pH on bacterial phenotypes when using the bacteriological dyes Aniline blue, Congo red, and Calcofluor white to analyze polysaccharide production. Study of galactose catabolism in Sinorhizobium meliloti led to the isolation of a mutation in dgok1, which was observed to overproduce exopolysaccharides when grown in the presence of galactose. When this strain was spotted onto plates containing Aniline blue, Congo red, or Calcofluor white, the intensity of the associated staining was strikingly different when compared to the Wild-type. Additionally, a Calcofluor dull phenotype was observed, suggesting production of a polysaccharide other than succinoglycan. Investigation of this phenotype revealed that these results were dependent on medium acidification, as buffering at pH 6 had no effect on these phenotypes, while medium buffered at pH 6.5 resulted in a reversal of the phenotypes. Screening for mutants of the dgok1 strain that were negative for the aniline blue phenotype yielded a strain carrying a mutation in a putative transketolase. Consistent with the plate phenotypes, when this mutant was grown in broth cultures it did not acidify its growth medium. This work shows that caution should be exercised in evaluating polysaccharide phenotypes based strictly on the use of dyes.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Composition of common bean cesnjenec and green lentil anicia and their nutritive value for growing rats

    No full text
    *Unité de Nutrition et Métabolisme Protéique, INRA Centre de Clermont-Ferrand-Theix Diffusion du document : Unité de Nutrition et Métabolisme Protéique, INRA Centre de Clermont-Ferrand-TheixInternational audienc

    Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation

    No full text
    Plasmid curing has shown that the ability to use glycerol as a carbon source is plasmid-encoded in Rhizobium leguminosarum. We isolated the locus responsible for glycerol utilization from plasmid pRleVF39c in R. leguminosarum bv. viciae VF39. This region was analyzed by DNA sequencing and mutagenesis. The locus encompasses a gene encoding GlpR (a DeoR regulator), genes encoding an ABC transporter, and genes glpK and glpD, encoding a kinase and dehydrogenase, respectively. All the genes except the regulatory gene glpR were organized into a single operon, and were required for growth on glycerol. The glp operon was strongly induced by both glycerol and glycerol 3-phosphate, as well as by pea seed exudate. GlpR repressed the operon in the absence of inducer. Mutation of genes encoding the ABC transporter abolished all transport of glycerol in transport assays using radiolabelled glycerol. This confirms that, unlike in other organisms such as Escherichia coli and Pseudomonas aeruginosa, which use facilitated diffusion, glycerol uptake occurs by an active process in R. leguminosarum. Since the glp locus is highly conserved in all sequenced R. leguminosarum and Rhizobium etli strains, as well as in Sinorhizobium spp. and Agrobacterium spp. and other alphaproteobacteria, this process for glycerol uptake is probably widespread. Mutants unable to use glycerol were deficient in competitiveness for nodulation of peas compared with the wild-type, suggesting that glycerol catabolism confers an advantage upon the bacterium in the rhizosphere or in the infection thread
    corecore