43 research outputs found

    Weak measurements are universal

    Full text link
    It is well known that any projective measurement can be decomposed into a sequence of weak measurements, which cause only small changes to the state. Similar constructions for generalized measurements, however, have relied on the use of an ancilla system. We show that any generalized measurement can be decomposed into a sequence of weak measurements without the use of an ancilla, and give an explicit construction for these weak measurements. The measurement procedure has the structure of a random walk along a curve in state space, with the measurement ending when one of the end points is reached. This shows that any measurement can be generated by weak measurements, and hence that weak measurements are universal. This may have important applications to the theory of entanglement.Comment: 4 pages, RevTeX format, essentially the published version, reference update

    Non-Markovian dynamics of a qubit coupled to an Ising spin bath

    Full text link
    We study the analytically solvable Ising model of a single qubit system coupled to a spin bath. The purpose of this study is to analyze and elucidate the performance of Markovian and non-Markovian master equations describing the dynamics of the system qubit, in comparison to the exact solution. We find that the time-convolutionless master equation performs particularly well up to fourth order in the system-bath coupling constant, in comparison to the Nakajima-Zwanzig master equation. Markovian approaches fare poorly due to the infinite bath correlation time in this model. A recently proposed post-Markovian master equation performs comparably to the time-convolutionless master equation for a properly chosen memory kernel, and outperforms all the approximation methods considered here at long times. Our findings shed light on the applicability of master equations to the description of reduced system dynamics in the presence of spin-baths.Comment: 17 pages, 16 figure

    Causal structures and the classification of higher order quantum computations

    Full text link
    Quantum operations are the most widely used tool in the theory of quantum information processing, representing elementary transformations of quantum states that are composed to form complex quantum circuits. The class of quantum transformations can be extended by including transformations on quantum operations, and transformations thereof, and so on up to the construction of a potentially infinite hierarchy of transformations. In the last decade, a sub-hierarchy, known as quantum combs, was exhaustively studied, and characterised as the most general class of transformations that can be achieved by quantum circuits with open slots hosting variable input elements, to form a complete output quantum circuit. The theory of quantum combs proved to be successful for the optimisation of information processing tasks otherwise untreatable. In more recent years the study of maps from combs to combs has increased, thanks to interesting examples showing how this next order of maps requires entanglement of the causal order of operations with the state of a control quantum system, or, even more radically, superpositions of alternate causal orderings. Some of these non-circuital transformations are known to be achievable and have even been achieved experimentally, and were proved to provide some computational advantage in various information-processing tasks with respect to quantum combs. Here we provide a formal language to form all possible types of transformations, and use it to prove general structure theorems for transformations in the hierarchy. We then provide a mathematical characterisation of the set of maps from combs to combs, hinting at a route for the complete characterisation of maps in the hierarchy. The classification is strictly related to the way in which the maps manipulate the causal structure of input circuits.Comment: 12 pages, revtex styl

    Witnessing causal nonseparability

    Full text link
    Our common understanding of the physical world deeply relies on the notion that events are ordered with respect to some time parameter, with past events serving as causes for future ones. Nonetheless, it was recently found that it is possible to formulate quantum mechanics without any reference to a global time or causal structure. The resulting framework includes new kinds of quantum resources that allow performing tasks - in particular, the violation of causal inequalities - which are impossible for events ordered according to a global causal order. However, no physical implementation of such resources is known. Here we show that a recently demonstrated resource for quantum computation - the quantum switch - is a genuine example of "indefinite causal order". We do this by introducing a new tool - the causal witness - which can detect the causal nonseparability of any quantum resource that is incompatible with a definite causal order. We show however that the quantum switch does not violate any causal nequality.Comment: 15 + 12 pages, 5 figures. Published versio

    Geometric Phase: a Diagnostic Tool for Entanglement

    Full text link
    Using a kinematic approach we show that the non-adiabatic, non-cyclic, geometric phase corresponding to the radiation emitted by a three level cascade system provides a sensitive diagnostic tool for determining the entanglement properties of the two modes of radiation. The nonunitary, noncyclic path in the state space may be realized through the same control parameters which control the purity/mixedness and entanglement. We show analytically that the geometric phase is related to concurrence in certain region of the parameter space. We further show that the rate of change of the geometric phase reveals its resilience to fluctuations only for pure Bell type states. Lastly, the derivative of the geometric phase carries information on both purity/mixedness and entanglement/separability.Comment: 13 pages 6 figure

    Bell Correlations and the Common Future

    Full text link
    Reichenbach's principle states that in a causal structure, correlations of classical information can stem from a common cause in the common past or a direct influence from one of the events in correlation to the other. The difficulty of explaining Bell correlations through a mechanism in that spirit can be read as questioning either the principle or even its basis: causality. In the former case, the principle can be replaced by its quantum version, accepting as a common cause an entangled state, leaving the phenomenon as mysterious as ever on the classical level (on which, after all, it occurs). If, more radically, the causal structure is questioned in principle, closed space-time curves may become possible that, as is argued in the present note, can give rise to non-local correlations if to-be-correlated pieces of classical information meet in the common future --- which they need to if the correlation is to be detected in the first place. The result is a view resembling Brassard and Raymond-Robichaud's parallel-lives variant of Hermann's and Everett's relative-state formalism, avoiding "multiple realities."Comment: 8 pages, 5 figure

    Distinguishability measures between ensembles of quantum states

    Full text link
    A quantum ensemble {(px,ρx)}\{(p_x, \rho_x)\} is a set of quantum states each occurring randomly with a given probability. Quantum ensembles are necessary to describe situations with incomplete a priori information, such as the output of a stochastic quantum channel (generalized measurement), and play a central role in quantum communication. In this paper, we propose measures of distance and fidelity between two quantum ensembles. We consider two approaches: the first one is based on the ability to mimic one ensemble given the other one as a resource and is closely related to the Monge-Kantorovich optimal transportation problem, while the second one uses the idea of extended-Hilbert-space (EHS) representations which introduce auxiliary pointer (or flag) states. Both types of measures enjoy a number of desirable properties. The Kantorovich measures, albeit monotonic under deterministic quantum operations, are not monotonic under generalized measurements. In contrast, the EHS measures are. We present operational interpretations for both types of measures. We also show that the EHS fidelity between ensembles provides a novel interpretation of the fidelity between mixed states--the latter is equal to the maximum of the fidelity between all pure-state ensembles whose averages are equal to the mixed states being compared. We finally use the new measures to define distance and fidelity for stochastic quantum channels and positive operator-valued measures (POVMs). These quantities may be useful in the context of tomography of stochastic quantum channels and quantum detectors.Comment: 31 pages, typos correcte

    Highly symmetric POVMs and their informational power

    Get PDF
    We discuss the dependence of the Shannon entropy of normalized finite rank-1 POVMs on the choice of the input state, looking for the states that minimize this quantity. To distinguish the class of measurements where the problem can be solved analytically, we introduce the notion of highly symmetric POVMs and classify them in dimension two (for qubits). In this case we prove that the entropy is minimal, and hence the relative entropy (informational power) is maximal, if and only if the input state is orthogonal to one of the states constituting a POVM. The method used in the proof, employing the Michel theory of critical points for group action, the Hermite interpolation and the structure of invariant polynomials for unitary-antiunitary groups, can also be applied in higher dimensions and for other entropy-like functions. The links between entropy minimization and entropic uncertainty relations, the Wehrl entropy and the quantum dynamical entropy are described.Comment: 40 pages, 3 figure
    corecore