92 research outputs found

    Analysis of error propagation in particle filters with approximation

    Full text link
    This paper examines the impact of approximation steps that become necessary when particle filters are implemented on resource-constrained platforms. We consider particle filters that perform intermittent approximation, either by subsampling the particles or by generating a parametric approximation. For such algorithms, we derive time-uniform bounds on the weak-sense LpL_p error and present associated exponential inequalities. We motivate the theoretical analysis by considering the leader node particle filter and present numerical experiments exploring its performance and the relationship to the error bounds.Comment: Published in at http://dx.doi.org/10.1214/11-AAP760 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    3D Human Pose and Shape Estimation via HybrIK-Transformer

    Full text link
    HybrIK relies on a combination of analytical inverse kinematics and deep learning to produce more accurate 3D pose estimation from 2D monocular images. HybrIK has three major components: (1) pretrained convolution backbone, (2) deconvolution to lift 3D pose from 2D convolution features, (3) analytical inverse kinematics pass correcting deep learning prediction using learned distribution of plausible twist and swing angles. In this paper we propose an enhancement of the 2D to 3D lifting module, replacing deconvolution with Transformer, resulting in accuracy and computational efficiency improvement relative to the original HybrIK method. We demonstrate our results on commonly used H36M, PW3D, COCO and HP3D datasets. Our code is publicly available https://github.com/boreshkinai/hybrik-transformer

    Efficient delay-tolerant particle filtering

    Full text link
    This paper proposes a novel framework for delay-tolerant particle filtering that is computationally efficient and has limited memory requirements. Within this framework the informativeness of a delayed (out-of-sequence) measurement (OOSM) is estimated using a lightweight procedure and uninformative measurements are immediately discarded. The framework requires the identification of a threshold that separates informative from uninformative; this threshold selection task is formulated as a constrained optimization problem, where the goal is to minimize tracking error whilst controlling the computational requirements. We develop an algorithm that provides an approximate solution for the optimization problem. Simulation experiments provide an example where the proposed framework processes less than 40% of all OOSMs with only a small reduction in tracking accuracy

    Optimization and Analysis of Distributed Averaging with Short Node Memory

    Full text link
    In this paper, we demonstrate, both theoretically and by numerical examples, that adding a local prediction component to the update rule can significantly improve the convergence rate of distributed averaging algorithms. We focus on the case where the local predictor is a linear combination of the node's two previous values (i.e., two memory taps), and our update rule computes a combination of the predictor and the usual weighted linear combination of values received from neighbouring nodes. We derive the optimal mixing parameter for combining the predictor with the neighbors' values, and carry out a theoretical analysis of the improvement in convergence rate that can be obtained using this acceleration methodology. For a chain topology on n nodes, this leads to a factor of n improvement over the one-step algorithm, and for a two-dimensional grid, our approach achieves a factor of n^1/2 improvement, in terms of the number of iterations required to reach a prescribed level of accuracy

    Meta-learning framework with applications to zero-shot time-series forecasting

    Full text link
    Can meta-learning discover generic ways of processing time series (TS) from a diverse dataset so as to greatly improve generalization on new TS coming from different datasets? This work provides positive evidence to this using a broad meta-learning framework which we show subsumes many existing meta-learning algorithms. Our theoretical analysis suggests that residual connections act as a meta-learning adaptation mechanism, generating a subset of task-specific parameters based on a given TS input, thus gradually expanding the expressive power of the architecture on-the-fly. The same mechanism is shown via linearization analysis to have the interpretation of a sequential update of the final linear layer. Our empirical results on a wide range of data emphasize the importance of the identified meta-learning mechanisms for successful zero-shot univariate forecasting, suggesting that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining, resulting in performance that is at least as good as that of state-of-practice univariate forecasting models
    • …
    corecore