888 research outputs found

    Protein function annotation using protein domain family resources

    Get PDF
    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource

    Diversity in protein domain superfamilies

    Get PDF
    Whilst ∼93% of domain superfamilies appear to be relatively structurally and functionally conserved based on the available data from the CATH-Gene3D domain classification resource, the remainder are much more diverse. In this review, we consider how domains in some of the most ubiquitous and promiscuous superfamilies have evolved, in particular the plasticity in their functional sites and surfaces which expands the repertoire of molecules they interact with and actions performed on them. To what extent can we identify a core function for these superfamilies which would allow us to develop a 'domain grammar of function' whereby a protein's biological role can be proposed from its constituent domains? Clearly the first step is to understand the extent to which these components vary and how changes in their molecular make-up modifies function

    Consensus clustering and functional interpretation of gene-expression data

    Get PDF
    Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas

    Co-Expression Network Models Suggest that Stress Increases Tolerance to Mutations

    Get PDF
    Network models are a well established tool for studying the robustness of complex systems, including modelling the effect of loss of function mutations in protein interaction networks. Past work has concentrated on average damage caused by random node removal, with little attention to the shape of the damage distribution. In this work, we use fission yeast co-expression networks before and after exposure to stress to model the effect of stress on mutational robustness. We find that exposure to stress decreases the average damage from node removal, suggesting stress induces greater tolerance to loss of function mutations. The shape of the damage distribution is also changed upon stress, with a greater incidence of extreme damage after exposure to stress. We demonstrate that the change in shape of the damage distribution can have considerable functional consequences, highlighting the need to consider the damage distribution in addition to average behaviour

    CATH functional families predict functional sites in proteins

    Get PDF
    MOTIVATION: Identification of functional sites in proteins is essential for functional characterization, variant interpretation and drug design. Several methods are available for predicting either a generic functional site, or specific types of functional site. Here, we present FunSite, a machine learning predictor that identifies catalytic, ligand-binding and protein-protein interaction functional sites using features derived from protein sequence and structure, and evolutionary data from CATH functional families (FunFams). RESULTS: FunSite's prediction performance was rigorously benchmarked using cross-validation and a holdout dataset. FunSite outperformed other publicly-available functional site prediction methods. We show that conserved residues in FunFams are enriched in functional sites. We found FunSite's performance depends greatly on the quality of functional site annotations and the information content of FunFams in the training data. Finally, we analyse which structural and evolutionary features are most predictive for functional sites. AVAILABILITY: https://github.com/UCL/cath-funsite-predictor. CONTACT: [email protected]. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    The opportunities and challenges posed by the new generation of deep learning-based protein structure predictors

    Get PDF
    The function of proteins can often be inferred from their three-dimensional structures. Experimental structural biologists spent decades studying these structures, but the accelerated pace of protein sequencing continuously increases the gaps between sequences and structures. The early 2020s saw the advent of a new generation of deep learning-based protein structure prediction tools that offer the potential to predict structures based on any number of protein sequences. In this review, we give an overview of the impact of this new generation of structure prediction tools, with examples of the impacted field in the life sciences. We discuss the novel opportunities and new scientific and technical challenges these tools present to the broader scientific community. Finally, we highlight some potential directions for the future of computational protein structure prediction

    A novel application method for wearable bend sensors

    Get PDF
    Bend sensors fundamental characteristic is to furnish an electrical resistance value related to the angle they are bent. This feature can be successfully exploited to realize wearable systems capable to measure human static and dynamic postures. In particular some efforts have been made to determine finger joint movements of human hands and it has been demonstrated the feasibility of using the so called data glove system as a goniometric device. The repeatability of such system is quite good for general purposes but it is still not sufficient for specific applications (for instance in virtual surgery). So here we introduce a novel application method of bend sensors and demonstrate how it can be useful to improve the system repeatabilit

    Gene Function Prediction from Functional Association Networks Using Kernel Partial Least Squares Regression

    Get PDF
    With the growing availability of large-scale biological datasets, automated methods of extracting functionally meaningful information from this data are becoming increasingly important. Data relating to functional association between genes or proteins, such as co-expression or functional association, is often represented in terms of gene or protein networks. Several methods of predicting gene function from these networks have been proposed. However, evaluating the relative performance of these algorithms may not be trivial: concerns have been raised over biases in different benchmarking methods and datasets, particularly relating to non-independence of functional association data and test data. In this paper we propose a new network-based gene function prediction algorithm using a commute-time kernel and partial least squares regression (Compass). We compare Compass to GeneMANIA, a leading network-based prediction algorithm, using a number of different benchmarks, and find that Compass outperforms GeneMANIA on these benchmarks. We also explicitly explore problems associated with the non-independence of functional association data and test data. We find that a benchmark based on the Gene Ontology database, which, directly or indirectly, incorporates information from other databases, may considerably overestimate the performance of algorithms exploiting functional association data for prediction

    Choosing the Best Enzyme Complex Structure Made Easy

    Get PDF
    In this issue of Structure, Tyzack et al. (2018) present a study of enzyme-ligand complexes in the PDB and show that the molecular similarity of bound and cognate ligands can be used to choose the most biologically appropriate complex structure for analysis when multiple structures are available

    Functional classification of CATH superfamilies: a domain-based approach for protein function annotation

    Get PDF
    Computational approaches that can predict protein functions are essential to bridge the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have been experimentally characterised. We present a domain-based method for protein function classification and prediction of functional sites that exploits functional subclassification of CATH superfamilies. The superfamilies are subclassified into functional families (FunFams) using a hierarchical clustering algorithm supervised by a new classification method, FunFHMMer
    • …
    corecore