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Whilst �93% of domain superfamilies appear to be relatively

structurally and functionally conserved based on the available

data from the CATH-Gene3D domain classification resource,

the remainder are much more diverse. In this review, we

consider how domains in some of the most ubiquitous and

promiscuous superfamilies have evolved, in particular the

plasticity in their functional sites and surfaces which expands

the repertoire of molecules they interact with and actions

performed on them. To what extent can we identify a core

function for these superfamilies which would allow us to

develop a ‘domain grammar of function’ whereby a protein’s

biological role can be proposed from its constituent domains?

Clearly the first step is to understand the extent to which these

components vary and how changes in their molecular make-up

modifies function.
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Introduction
Families of proteins arise through speciation (ortholo-

gous relatives) and through duplication of genes during

evolution (paralogous relatives) and it is the paralogues

that are most likely to diverge, although not necessarily

[1]. By classifying families, superfamilies and collating

information on their protein structures, sequences and

functions, we can explore how relatives diverge and

understand the molecular mechanisms underlying any

functional changes [2]. Such insights are essential for

inheriting properties between relatives to cope with the

huge dearth in experimental annotations. For example,

an inspection of the experimental annotations in the

UniProtKB/Swiss-Prot sequence database (June 2015)

reveals that less than 15% of human proteins have

detailed functional characterisation and only 4% have

known structures. They are also essential for under-
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standing whether genetic variations are likely to be

tolerated and affect function.

Many resources now exist for classifying protein families,

some of which consider the entire protein (e.g., PAN-

THER [3], HAMAP [4], TIGRFAMs [5] and SFLD [6])

whilst others classify the domain components (e.g., Pfam

[7], SMART [8], PRINTS [9], InterPro [10], CDD [11],

CATH [12], SCOP [13] and ECOD [14]) generally con-

sidered to be evolutionary independent modules having

distinct functional properties [15]. Some resources like

PhyloFacts [16] also provide classification of both full-

length proteins and domains. At least two thirds of

eukaryotic and more than a half of prokaryotic proteins

are composed of multiple domains [17] and the most

highly populated domain superfamilies are universal to all

kingdoms of life or major clades or branches [18]. There-

fore, whilst studies have suggested that there may be

approximately 100 thousand protein families [16,19]

many proteins can be decomposed into common constit-

uent domains derived from a more limited repertoire of

�15,000 superfamilies [19]. Within a protein, the differ-

ent domains tend to have different roles, which when

combined make up the general function of that protein.

Therefore, by understanding the different functional

roles that domains possess we can start to build up a

‘domain grammar of function’ [20]. Interestingly, a few

hundred of these domain superfamilies’ dominate nature,

accounting for nearly two thirds of all known domains

[21]. It is in these superfamilies that we see the most

diversity (see Figure 1) and this is largely reflected in their

binding properties and/or their ability to metabolise di-

verse substrates.

In this review we use the CATH-Gene3D domain clas-

sification, currently the most comprehensive structure-

based superfamily resource, to assess the extent of diver-

gence across protein domain ‘superfamily space’ and

review the mechanisms of divergence revealed by de-

tailed studies of specific families undertaken by us and

other groups.

Capturing information on structural and
functional diversity within superfamilies
Specialised manually curated structure-based classifica-

tions like SFLD [6], TEED [23], CYPED [23], LccED

[24] and ESTHER [25] provide valuable insights into the

diversity of selected enzyme superfamilies and there have

been several elegant studies of large, diverse superfami-

lies in the Structure Function Linking database (SFLD)

resource [26,27�]. However, relatively few superfamilies

have been explored in such detail because of the limited
www.sciencedirect.com
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Figure 1
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Diversity in protein domain superfamilies. (a) Correlation of structural diversity with functional diversity in CATH domain superfamilies. Each point

represents a CATH superfamily. Structural diversity is given by the number of distinct Structurally Similar Groups (SSGs) in which relatives

superpose with <9 Å RMSD. Functional diversity is given by the number of functional families (FunFams), identified using HMM based strategies

[22], and is plotted in the logarithmic (log10) scale. (b) Correlation of multi-domain architecture (MDA) diversity with functional diversity in CATH

domain superfamilies in the logarithmic (log10) scale. Each point represents a CATH superfamily. MDA diversity is given by the number of different

multi-domain architectures containing one or more superfamily domains. (c) Structural diversity in the highly populated ‘NAD(P)-binding

Rossmann-like’ superfamily (CATH 3.40.50.720). The figure shows structures of the smallest and largest domain in the superfamily. On the far right

is the superposition of all non-redundant superfamily members to highlight the conserved structural core. (d) Visualization of functional diversity in

the HUP domain superfamily (CATH 3.40.50.620) using Cytoscape [80] networks. The nodes (represented as circles) represent functional families

and the edges represent HMM-based family similarities. Each colour denotes a unique Enzyme Commission (EC) number and grey nodes indicate

FunFams without any EC number [22].
experimental data. Since relatives sharing structural and

functional properties experience similar constraints on

their sequences to preserve these properties, one way to

explore diversity across ‘superfamily space’ is to exploit

the much more prolific sequence data that is available

[22,23,28��].

By appropriately clustering relatives with similar se-

quence properties, several resources [6,16,19] classify

specific ‘functional families’. Approaches range from pair-
www.sciencedirect.com 
wise comparisons [6] to more sophisticated profile-based

analyses [22] that can also be used to detect key residue

sites differing between the functional families. Whilst

residues important for folding or stability tend to be

conserved across the whole superfamily, positions only

conserved in certain functional families (specificity de-

termining positions or SDPs) are often under positive

selection and associated with distinct functional proper-

ties [29,30] (see Figure 2(a)). SDPs can be associated with

a wide variety of protein sites. For example, in addition to
Current Opinion in Genetics & Development 2015, 35:40–49
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Figure 2
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Functional diversity in the Thiamine pyrophosphate (TPP)-dependant enzyme superfamily (CATH 3.40.50.970) due to: (a) changes in residues. The

superposition of the PYR domains of the Pyruvate decarboxylase (PDC, EC 4.1.1.1) (shown in blue) and Pyruvate:ferrodoxin oxidoreductase

(PFOR, EC 1.2.7.1) (shown in red) structures highlights the differences in their catalytic residues (shown as sticks). The specificity-determining

positions (SDPs, indicated by an asterisk) around the known catalytic residues are displayed in sequence logos corresponding to the PDC and

PFOR functional family in CATH-Gene3D. The catalytic residues are shown in blue for PDC and in red for PFOR and the conserved residues are

indicated by a caret (^). The positions are numbered according to the corresponding residue in PDB 1PVD. (b) Changes in domain context.

Pyruvate decarboxylase (PDC, EC 4.1.1.1) and transketolase (TK, EC 2.2.1.1) in the TPP-dependant superfamily both consist of two chains

comprising two TPP domains – PP and PYR (chains are represented by darker and lighter shades of each constituent domain colour). The left

hand image shows the difference in multi-domain architectures and 3D arrangements for these two proteins. The middle image shows the

different dimeric assemblies that the proteins form. The right image zooms in on the active sites. The TPP molecule is shown in red and the

catalytic residues are shown in magenta. Catalytic residues are contributed from the PP domain of one subunit and the PYR of the other subunit.

In TK the size of the active site pocket is larger.

Current Opinion in Genetics & Development 2015, 35:40–49 www.sciencedirect.com
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mutations in the ligand binding pocket, diversity in the

Metabotropic Glutamate Receptors is conferred by SDPs

in allosteric sites, the dimerization interface and the hinge

region [31�]. Similarly the functional specificity of signal-

ling proteins like the Ras superfamily involves mutations

in the nucleotide-binding pocket and interfaces co-ordi-

nating the communication between the nucleotide and

membrane-binding regions [32].

For exploring superfamily diversity in the CATH-

Gene3D resource, we have used an approach that

searches for SDPs to distinguish between different func-

tional clusters [22]. This approach sub-classifies the

�2700 CATH-Gene3D superfamilies into �110,000

functional families by optimal partitioning of hierarchical

clustering trees for each superfamily, based on identifying

characteristic patterns of differentially conserved posi-

tions (SDPs) and conserved positions between different

functional groups, all of which have at least one relative

with an experimental functional annotation in the Gene

Ontology (GO) [33]. Whilst validation suggests that these

functional groups are reasonably effective in transferring

experimental annotations between relatives, there is still

considerable room for improvement, as suggested by the

results of a recent international large-scale protein func-

tion prediction assessment [34]. However, functional

family classification does shed light on superfamily diver-

sity, revealing that for only 7% (�200) of these super-

families, sequence change is associated with very

significant diversity in structure, function and protein

context (see Figure 1) while the remaining �93% of

the superfamilies appear to have structurally and func-

tionally conserved relatives.

Functional diversity in binding and enzyme
superfamilies — ‘molecular tinkering’
Of the 200 most diverse domain superfamilies, each of

which have 100 or more functional families and account

for �50% of all CATH-Gene3D domains, �95% of these

are superfamilies directly or indirectly associated with

enzymatic activity and many of the remainder have

relatives with binding activity. Whilst detailed studies

of some superfamilies have characterised considerable

structural divergence modifying functional site features

([35,36], see also below), just small changes associated

with residue mutations in a binding or active site can alter

the shape, physicochemical and electrostatic characteris-

tics significantly, modifying ligand specificities in binding

proteins and affecting substrate specificities, chemistries

and catalytic efficiencies in enzymes. The Nuclear Re-

ceptor superfamily shows amazing diversity in the ligand

binding cavity brought about by such mutations, driven

by strong divergent selection and adaptive positive selec-

tion [37]. Similarly, in the Tubulin superfamily, many of

the positively selected sites are found at or adjacent to

functionally important sites [38].
www.sciencedirect.com 
In enzymes, considerable sequence divergence can occur

in the active sites. In nearly 55% of 101 experimentally

well-annotated enzyme superfamilies (accounting for

almost 50% of all enzyme sequences in CATH-Gene3D)

dramatic changes in catalytic machinery occur [39]. How-

ever, in support of previous studies of Babbitt and co-

workers [28��] which reported that many relatives in

SFLD superfamilies share a common mechanistic step,

40% of these superfamilies have one or two catalytic

residues common to all functional families. In some cases

catalytic residues with similar physicochemical properties

are located at similar 3D locations even though they are in

different positions in the sequence (see Figure 2(a)).

Thus, frequently some aspect of the chemistry is con-

served and analyses based on phylogenetic trees derived

from structure-based alignments of CATH-Gene3D

superfamilies confirm, on a much larger scale than early

studies [2], that most superfamily diversity is associated

with changes in substrate specificity [40�], suggesting that

it is hard to change the chemistry presumably because of

the complex sequence of mutations needed to create a

new arrangement of catalytic residues with the correct

spatial relationships.

However, dramatic changes in chemistry can occur, such

as in the Enolase superfamily [41,42], Aldolase Class I

superfamily [43��] (see Figure 3) and DRE-TIM metal-

lolyase superfamily [44], and sometimes the same cata-

lytic core is used for very different reactions. For example,

many diverse enzymes (peptidases, thioesterases, lipases)

in the a/b-hydrolase superfamily use the same catalytic

triad (Ser-His-Asp) for different types of bond changes

[25]. Diversity can also result from loss or changes to

metal ions bound by relatives [45�] for example in para-

oxonase-1 where an alternative binding mode of the

catalytic calcium ion appears to initiate divergence in

enzymatic activity [46] and other cases where alterations

from the ‘‘native’’ metal of a metalloenzyme have been

seen to promote promiscuity [47].

Interestingly, in some enzyme superfamilies, functional

families with significantly different catalytic machineries

have highly similar functions and substrates, suggesting

either convergence within the superfamily or evolution-

ary drift from a common functional ancestor along differ-

ent routes, that is, perhaps a trajectory to a less efficient

enzyme with subsequent mutations restoring the activity

or even resulting in a more efficient form of the enzyme.

It is difficult to distinguish these cases without robust

phylogenetic analyses. Such studies on Rubisco, an abun-

dant protein important for carbon fixation, show that a

more efficient form of Rubisco has emerged by conver-

gent evolution more than 62 times in harsh environments,

and structure-based analyses reveal mutations in the

active site loop and secondary shell, where they possibly

influence rearrangements of the active site; also at inter-

faces in the oligomer suggesting a role in allostery [48�].
Current Opinion in Genetics & Development 2015, 35:40–49
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Figure 3

1. Act as general acid catalyst (Asp, Asp, Asp)
2. Acts as general base catalyst (Glu)
3. Stabilise intermediate (Ser, Asn)
4. Removes proton from substrate (Tyr)

5. Activate water molecule (Glu, Tyr)
6. Transfers proton (Glu, Glu)
7. Act as nucleophile to form Schiff base (Lys, Lys)
8. Stabilises negative charges (Lys)
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Different catalytic machinery performing same enzymatic chemistry. The three domains shown in this figure use different catalytic machineries to

perform the same enzymatic reaction (EC 4.1.2.13). Each domain belongs to a different functional family in the Aldolase Class I superfamily (CATH

3.20.20.70). On the figure different regions in the active site are assigned to clusters 1–8. The catalytic residues in each cluster are reported to

have the same functional properties, summarised on the figure. Each colour represents the catalytic residues of a different domain: red is 1aldA00,

blue is 1b57A00, and green is 1ok4A00. The remaining portions of the three domains are coloured grey. The same catalytic residue is used by two

or more domains in clusters 1, 6, and 7. Different catalytic residues are used in clusters 3 and 5 but still show enough physicochemical similarity

to provide the same functionality. The proteins have different catalytic rates which may reflect their different catalytic machineries [51].
Enzyme superfamilies showing the greatest versatility in

CATH-Gene3D, frequently adopt alpha/beta structures,

two thirds having TIM or Rossmann folds. As Tawfik and

his colleagues have reported in a recent publication, these

structures tend to have regular, well-packed structural

cores and the catalytic residues mainly locate to loops

largely detached from these cores and therefore perhaps

better able to tolerate the destabilising effects of muta-

tions [49�,50��].
Diversity in protein superfamilies can also arise from

mutations in protein interfaces. Furthermore, relatives

can exploit completely different surfaces in their protein

interactions. Large-scale studies comparing CATH-

Gene3D functional families showed that in 645 highly

versatile superfamilies, cumulative binding sites from

diverse relatives covered most of the protein surface

and were associated with a wide range of protein partners

[52�]. However, sometimes the same interface is

exploited but by different partners. In the two Dinucleo-

tide Binding Domains Flavoproteins (tDBDF) superfam-
Current Opinion in Genetics & Development 2015, 35:40–49 
ily, the diversity of reactions carried out by relatives is

achieved by different protein partners acting as electron

acceptors and interacting with the same face of the

tDBDF domain [53]. Paralogous relatives are more likely

to bind different protein partners [54] and this is a

significant effect in the beta-propellor superfamilies,

whose structures contain repeating WD40 sub-domains,

and in which human paralogues have multiple distinct

surfaces interacting with a very wide variety of proteins,

peptides or nucleic acids [55].

Structural mechanisms of superfamily
divergence
Although only 10% of the CATH-Gene3D functional

families have structural representatives, this data can help

identify superfamilies capable of great structural plastici-

ty where relatives display considerable diversity due to

extensive residue insertions and repetitions or inserted

structural motifs [56,57]. For �160 CATH superfamilies,

accounting for half of all known domains in CATH-
www.sciencedirect.com
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Gene3D, at least a two-fold variation in the size is

observed between the most diverse domains [58]. How-

ever, analyses of selected superfamilies [35,59] and more

recent large-scale studies have shown that the structural

core (generally 40–50% of the domain) is highly con-

served even for relatives separated by billions of years

[57] (see Figure 1). Long residue inserts in diverse

relatives generally adopt secondary structure features that

form structural decorations to this core and can be associ-

ated with modified functions, for example, by altering

active site geometry and thereby changing substrate

specificity (see Figure 2(a)), or altering surface features

and thereby changing protein interaction partners [52�].
In the Thiamine pyrophosphate (TPP)-dependant super-

family, different functional families have varying inserts

forming small additional secondary structure features that

reshape the active site for different substrates (see

Figure 2(b)). In the HUP domain superfamily, also, quite

extensive structural embellishments extend the active

site [35]. Insertions of motifs or sub-domains can also

result from gene fusions, for example, in the Haloalkanoic

Acid Dehalogenase (HAD) superfamily where they pro-

vide diverse specificity determinants for a broad range of

substrates [60��].

Dramatic structural rearrangements can also arise from

variations in repeating units. In the Vicinal Oxygen

Chelate (VOC) superfamily, members share a common

babbb subdomain that is organized into different topo-

logical (or domain-swapped) combinations in different

relatives that maximizes the catalytic versatility of the

metal center [61]. These and other structural changes

such as circular permutations and rearrangements in b-

sheet topologies can sometimes transform the fold [62] as

well as modifying the function [50��].

Diversity can also emerge from changes in less structured

regions, for example, repeats giving rise to low-complexi-

ty regions (LCRs), such as polyalanine or polyglutamine

runs. These often evolve rapidly and can have a major

influence on the transcriptional activity of the protein

[63]. Similarly, variations in (Gly)n -X repeats in glycine

rich domains have been observed to alter the expression

pattern, modulation and sub-cellular localization of rela-

tives in some plant families [64].

Superfamily diversity arising from different
multi-domain contexts
Gene fusions are another evolutionary mechanism con-

ferring diversity as they can significantly alter the context

of a domain (i.e., by changing the multi-domain architec-

ture (MDA) of the protein), thereby modifying its molec-

ular function and biological role. Domains have been

frequently duplicated and shuffled within genomes, dur-

ing evolution, with fusions being more frequent and

generally occurring at N or C termini [65]. For 92% of

the 200 most diverse superfamilies in CATH-Gene3D
www.sciencedirect.com 
superfamilies, that is, those having the highest number of

functional families, relatives occur in more than 100 dif-

ferent multi-domain contexts [21] (Figure 1(b)). Changes

in domain partners may not necessarily alter the function

of the domain but change the context in which it operates,

for example, locating it in different protein complexes

and/or pathways. For example, early studies demonstrat-

ed the recruitment of domain relatives to different meta-

bolic pathways for the chemistry they bring [66].

However, changes in domain partners can also alter speci-

ficity. For example, in the highly diverse Thiamine pyro-

phosphate (TPP)-dependant enzyme superfamily changes

in domain partnership alter the size and physicochemical

properties of the active site pocket (see Figure 2(b)),

enabling a huge range of substrates, products and ste-

reo-selectivity [67]. Different oligomerisation states also

effectively change the domain context. Again, in the TPP

superfamily, various oligomerisation states have evolved in

different species. Whilst some may be associated with

enhanced stability, others clearly influence active site

characteristics by changing the positioning of the domains

providing catalytic residues (see Figure 2(b)).

Diversity in superfamilies due to promiscuity
Diversity within a superfamily can also be the result of

individual relatives having multiple functions. For exam-

ple, relatives can have multiple catalytic activities not

necessarily of equal efficiency, as in promiscuous enzymes;

or moonlighting functions whereby proteins perform

completely different functions to their native activity

sometimes involving different sites [68,69]. Promiscuity

can be the starting point for the evolution of a new function

[49�,50��]. Under natural selection, promiscuous enzymes

can give rise to specialist enzymes by a variety of different

mechanisms - protein dynamics (e.g., changes in confor-

mational dynamics have converted a promiscuous gener-

alist beta-lactamase to a penicillin-specific beta-lactamase,

without significant changes in the structure of the active

site [70]), domain insertions (e.g., HAD superfamily

[36,60��]), rearrangements in the catalytic metal ions

[71] and binding of alternative cofactors [72].

An increasing number of proteins are now known to

moonlight and these activities can be induced by oligo-

merisation, cellular localization, differential expression

and substrate concentration. For example, Albaflavenone

monooxygenase in the Cytochrome P450 superfamily,

also functions as a Terpene synthase, an activity not

observed in any other superfamily member. The catalytic

machineries for the two enzymatic reactions are located in

distinct pockets on the domain and the reactions are

carried out at different pHs [73].

Conclusions
In most large diverse superfamilies, functional diversity

results from a combination of different molecular mecha-
Current Opinion in Genetics & Development 2015, 35:40–49
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Figure 4

Changes in
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Functional diversity of proteins can arise due to one or more of the following mechanisms: (a) Structural embellishments around active site, (b)

Structural embellishments changing interfaces, (c) Gene fusion, (d) Oligomerisation, (e) Promiscuity, (f) Moonlighting, (g) Post-translational

modification and (h) Changes in active site residue. Note that for the mechanism panels (a), (c) and (d), one of the enzyme active site residue is

contributed by its domain partner.
nisms (Figure 4). For example, in the PD-(D/E)XK

Phosphodiesterase superfamily there are structural

embellishments to the core, domain swapping events,

active site residue variations and changes in MDA [74].

Similarly, in the Ribonuclease H-like (RNHL) superfam-

ily [75], and many other families discussed above.

Experimental data on functional diversity grows slowly as

detailed studies are time-consuming and expensive, how-

ever, classifying the millions of sequences accumulating

in public repositories like UniProt into putative function-

al families can reveal subtle changes in conservation

patterns that suggest shifts in binding specificities or

catalytic machineries. These data can guide experiments

to focus on unusual relatives and more comprehensively

landscape the functional repertoires of the most versatile

superfamilies. For example, sequence similarity networks

based on protein families can help in providing a com-
Current Opinion in Genetics & Development 2015, 35:40–49 
prehensive summary of sequence, structure and function

relationships in a functionally diverse superfamily. Recent

studies [27�,60��,76] of such networks derived from curat-

ed family classification for three functionally diverse super-

families in SFLD have been used to aid in target selection

for interesting targets for experimental characterisation.

The availability of automated functional classifications of

superfamilies will ultimately guide experimental valida-

tion using high-throughput approaches and aid in improv-

ing the functional annotation of genomes. This will be

especially important for large diverse superfamilies.

Only �63% of the 25 million domain sequences in

CATH-Gene3D can be assigned to an experimentally

annotated functional family and less than 10% of these

families have a known structure, so there may be much

more diversity to discover. Certainly analyses of microbial

communities hint at exciting novel chemistries [77,78].
www.sciencedirect.com
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Although the lack of data hinders our understanding,

most studies of enzyme superfamilies, even those that

are mechanistically very diverse, suggest that chemistry is

usually preserved or there is conservation of a specific

partial reaction among all relatives and that it is substrate

specificity that is much more likely to change [28��].
Furthermore, the relative success of domain-based strat-

egies for protein function prediction [22,79] suggests that

a general functional role is conserved across most domain

superfamilies and that diversity largely results from ex-

ploitation of that role on multiple ligands or substrates,

and in multiple contexts. In other words, the structural

diversity observed in promiscuous superfamilies is more

frequently associated with changes that reflect different

domain contexts or changes in substrate specificity rather

than dramatic changes in the functional role. This sug-

gests that for many domain superfamilies’ a domain

grammar of function can be applied.
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