92 research outputs found

    Approximating the Diameter of Planar Graphs in Near Linear Time

    Get PDF
    We present a (1+ϵ)(1+\epsilon)-approximation algorithm running in O(f(ϵ)nlog4n)O(f(\epsilon)\cdot n \log^4 n) time for finding the diameter of an undirected planar graph with non-negative edge lengths

    Faster Shortest Paths in Dense Distance Graphs, with Applications

    Full text link
    We show how to combine two techniques for efficiently computing shortest paths in directed planar graphs. The first is the linear-time shortest-path algorithm of Henzinger, Klein, Subramanian, and Rao [STOC'94]. The second is Fakcharoenphol and Rao's algorithm [FOCS'01] for emulating Dijkstra's algorithm on the dense distance graph (DDG). A DDG is defined for a decomposition of a planar graph GG into regions of at most rr vertices each, for some parameter r<nr < n. The vertex set of the DDG is the set of Θ(n/r)\Theta(n/\sqrt r) vertices of GG that belong to more than one region (boundary vertices). The DDG has Θ(n)\Theta(n) arcs, such that distances in the DDG are equal to the distances in GG. Fakcharoenphol and Rao's implementation of Dijkstra's algorithm on the DDG (nicknamed FR-Dijkstra) runs in O(nlog(n)r1/2logr)O(n\log(n) r^{-1/2} \log r) time, and is a key component in many state-of-the-art planar graph algorithms for shortest paths, minimum cuts, and maximum flows. By combining these two techniques we remove the logn\log n dependency in the running time of the shortest-path algorithm, making it O(nr1/2log2r)O(n r^{-1/2} \log^2r). This work is part of a research agenda that aims to develop new techniques that would lead to faster, possibly linear-time, algorithms for problems such as minimum-cut, maximum-flow, and shortest paths with negative arc lengths. As immediate applications, we show how to compute maximum flow in directed weighted planar graphs in O(nlogp)O(n \log p) time, where pp is the minimum number of edges on any path from the source to the sink. We also show how to compute any part of the DDG that corresponds to a region with rr vertices and kk boundary vertices in O(rlogk)O(r \log k) time, which is faster than has been previously known for small values of kk

    Improved Bounds for Online Preemptive Matching

    Get PDF
    When designing a preemptive online algorithm for the maximum matching problem, we wish to maintain a valid matching M while edges of the underlying graph are presented one after the other. When presented with an edge e, the algorithm should decide whether to augment the matching M by adding e (in which case e may be removed later on) or to keep M in its current form without adding e (in which case e is lost for good). The objective is to eventually hold a matching M with maximum weight. The main contribution of this paper is to establish new lower and upper bounds on the competitive ratio achievable by preemptive online algorithms: 1. We provide a lower bound of 1+ln 2~1.693 on the competitive ratio of any randomized algorithm for the maximum cardinality matching problem, thus improving on the currently best known bound of e/(e-1)~1.581 due to Karp, Vazirani, and Vazirani [STOC'90]. 2. We devise a randomized algorithm that achieves an expected competitive ratio of 5.356 for maximum weight matching. This finding demonstrates the power of randomization in this context, showing how to beat the tight bound of 3 +2\sqrt{2}~5.828 for deterministic algorithms, obtained by combining the 5.828 upper bound of McGregor [APPROX'05] and the recent 5.828 lower bound of Varadaraja [ICALP'11]

    Better Tradeoffs for Exact Distance Oracles in Planar Graphs

    Full text link
    We present an O(n1.5)O(n^{1.5})-space distance oracle for directed planar graphs that answers distance queries in O(logn)O(\log n) time. Our oracle both significantly simplifies and significantly improves the recent oracle of Cohen-Addad, Dahlgaard and Wulff-Nilsen [FOCS 2017], which uses O(n5/3)O(n^{5/3})-space and answers queries in O(logn)O(\log n) time. We achieve this by designing an elegant and efficient point location data structure for Voronoi diagrams on planar graphs. We further show a smooth tradeoff between space and query-time. For any S[n,n2]S\in [n,n^2], we show an oracle of size SS that answers queries in O~(max{1,n1.5/S})\tilde O(\max\{1,n^{1.5}/S\}) time. This new tradeoff is currently the best (up to polylogarithmic factors) for the entire range of SS and improves by polynomial factors over all the previously known tradeoffs for the range S[n,n5/3]S \in [n,n^{5/3}]
    corecore