92 research outputs found
Approximating the Diameter of Planar Graphs in Near Linear Time
We present a -approximation algorithm running in
time for finding the diameter of an undirected
planar graph with non-negative edge lengths
Faster Shortest Paths in Dense Distance Graphs, with Applications
We show how to combine two techniques for efficiently computing shortest
paths in directed planar graphs. The first is the linear-time shortest-path
algorithm of Henzinger, Klein, Subramanian, and Rao [STOC'94]. The second is
Fakcharoenphol and Rao's algorithm [FOCS'01] for emulating Dijkstra's algorithm
on the dense distance graph (DDG). A DDG is defined for a decomposition of a
planar graph into regions of at most vertices each, for some parameter
. The vertex set of the DDG is the set of vertices
of that belong to more than one region (boundary vertices). The DDG has
arcs, such that distances in the DDG are equal to the distances in
. Fakcharoenphol and Rao's implementation of Dijkstra's algorithm on the DDG
(nicknamed FR-Dijkstra) runs in time, and is a
key component in many state-of-the-art planar graph algorithms for shortest
paths, minimum cuts, and maximum flows. By combining these two techniques we
remove the dependency in the running time of the shortest-path
algorithm, making it .
This work is part of a research agenda that aims to develop new techniques
that would lead to faster, possibly linear-time, algorithms for problems such
as minimum-cut, maximum-flow, and shortest paths with negative arc lengths. As
immediate applications, we show how to compute maximum flow in directed
weighted planar graphs in time, where is the minimum number
of edges on any path from the source to the sink. We also show how to compute
any part of the DDG that corresponds to a region with vertices and
boundary vertices in time, which is faster than has been
previously known for small values of
Improved Bounds for Online Preemptive Matching
When designing a preemptive online algorithm for the maximum matching
problem, we wish to maintain a valid matching M while edges of the underlying
graph are presented one after the other. When presented with an edge e, the
algorithm should decide whether to augment the matching M by adding e (in which
case e may be removed later on) or to keep M in its current form without adding
e (in which case e is lost for good). The objective is to eventually hold a
matching M with maximum weight.
The main contribution of this paper is to establish new lower and upper
bounds on the competitive ratio achievable by preemptive online algorithms:
1. We provide a lower bound of 1+ln 2~1.693 on the competitive ratio of any
randomized algorithm for the maximum cardinality matching problem, thus
improving on the currently best known bound of e/(e-1)~1.581 due to Karp,
Vazirani, and Vazirani [STOC'90].
2. We devise a randomized algorithm that achieves an expected competitive
ratio of 5.356 for maximum weight matching. This finding demonstrates the power
of randomization in this context, showing how to beat the tight bound of 3
+2\sqrt{2}~5.828 for deterministic algorithms, obtained by combining the 5.828
upper bound of McGregor [APPROX'05] and the recent 5.828 lower bound of
Varadaraja [ICALP'11]
Better Tradeoffs for Exact Distance Oracles in Planar Graphs
We present an -space distance oracle for directed planar graphs
that answers distance queries in time. Our oracle both
significantly simplifies and significantly improves the recent oracle of
Cohen-Addad, Dahlgaard and Wulff-Nilsen [FOCS 2017], which uses
-space and answers queries in time. We achieve this by
designing an elegant and efficient point location data structure for Voronoi
diagrams on planar graphs.
We further show a smooth tradeoff between space and query-time. For any , we show an oracle of size that answers queries in time. This new tradeoff is currently the best (up to
polylogarithmic factors) for the entire range of and improves by polynomial
factors over all the previously known tradeoffs for the range
- …