73 research outputs found

    How Bad is Forming Your Own Opinion?

    Full text link
    The question of how people form their opinion has fascinated economists and sociologists for quite some time. In many of the models, a group of people in a social network, each holding a numerical opinion, arrive at a shared opinion through repeated averaging with their neighbors in the network. Motivated by the observation that consensus is rarely reached in real opinion dynamics, we study a related sociological model in which individuals' intrinsic beliefs counterbalance the averaging process and yield a diversity of opinions. By interpreting the repeated averaging as best-response dynamics in an underlying game with natural payoffs, and the limit of the process as an equilibrium, we are able to study the cost of disagreement in these models relative to a social optimum. We provide a tight bound on the cost at equilibrium relative to the optimum; our analysis draws a connection between these agreement models and extremal problems that lead to generalized eigenvalues. We also consider a natural network design problem in this setting: which links can we add to the underlying network to reduce the cost of disagreement at equilibrium

    Planning Problems for Sophisticated Agents with Present Bias

    Full text link
    Present bias, the tendency to weigh costs and benefits incurred in the present too heavily, is one of the most widespread human behavioral biases. It has also been the subject of extensive study in the behavioral economics literature. While the simplest models assume that the agents are naive, reasoning about the future without taking their bias into account, there is considerable evidence that people often behave in ways that are sophisticated with respect to present bias, making plans based on the belief that they will be present-biased in the future. For example, committing to a course of action to reduce future opportunities for procrastination or overconsumption are instances of sophisticated behavior in everyday life. Models of sophisticated behavior have lacked an underlying formalism that allows one to reason over the full space of multi-step tasks that a sophisticated agent might face. This has made it correspondingly difficult to make comparative or worst-case statements about the performance of sophisticated agents in arbitrary scenarios. In this paper, we incorporate the notion of sophistication into a graph-theoretic model that we used in recent work for modeling naive agents. This new synthesis of two formalisms - sophistication and graph-theoretic planning - uncovers a rich structure that wasn't apparent in the earlier behavioral economics work on this problem. In particular, our graph-theoretic model makes two kinds of new results possible. First, we give tight worst-case bounds on the performance of sophisticated agents in arbitrary multi-step tasks relative to the optimal plan. Second, the flexibility of our formalism makes it possible to identify new phenomena that had not been seen in prior literature: these include a surprising non-monotonic property in the use of rewards to motivate sophisticated agents and a framework for reasoning about commitment devices

    Economic Efficiency Requires Interaction

    Full text link
    We study the necessity of interaction between individuals for obtaining approximately efficient allocations. The role of interaction in markets has received significant attention in economic thinking, e.g. in Hayek's 1945 classic paper. We consider this problem in the framework of simultaneous communication complexity. We analyze the amount of simultaneous communication required for achieving an approximately efficient allocation. In particular, we consider two settings: combinatorial auctions with unit demand bidders (bipartite matching) and combinatorial auctions with subadditive bidders. For both settings we first show that non-interactive systems have enormous communication costs relative to interactive ones. On the other hand, we show that limited interaction enables us to find approximately efficient allocations

    Planning with Multiple Biases

    Full text link
    Recent work has considered theoretical models for the behavior of agents with specific behavioral biases: rather than making decisions that optimize a given payoff function, the agent behaves inefficiently because its decisions suffer from an underlying bias. These approaches have generally considered an agent who experiences a single behavioral bias, studying the effect of this bias on the outcome. In general, however, decision-making can and will be affected by multiple biases operating at the same time. How do multiple biases interact to produce the overall outcome? Here we consider decisions in the presence of a pair of biases exhibiting an intuitively natural interaction: present bias -- the tendency to value costs incurred in the present too highly -- and sunk-cost bias -- the tendency to incorporate costs experienced in the past into one's plans for the future. We propose a theoretical model for planning with this pair of biases, and we show how certain natural behavioral phenomena can arise in our model only when agents exhibit both biases. As part of our model we differentiate between agents that are aware of their biases (sophisticated) and agents that are unaware of them (naive). Interestingly, we show that the interaction between the two biases is quite complex: in some cases, they mitigate each other's effects while in other cases they might amplify each other. We obtain a number of further results as well, including the fact that the planning problem in our model for an agent experiencing and aware of both biases is computationally hard in general, though tractable under more relaxed assumptions

    Mechanism Design with Moral Bidders

    Get PDF
    A rapidly growing literature on lying in behavioral economics and psychology shows that individuals often do not lie even when lying maximizes their utility. In this work, we attempt to incorporate these findings into the theory of mechanism design. We consider players that have a preference for truth-telling and will only lie if their benefit from lying is sufficiently larger than the loss of the others. To accommodate such players, we introduce α\alpha-moral mechanisms, in which the gain of a player from misreporting his true value, comparing to truth-telling, is at most α\alpha times the loss that the others incur due to misreporting. We develop a theory of moral mechanisms in the canonical setting of single-item auctions. We identify similarities and disparities to the standard theory of truthful mechanisms. In particular, we show that the allocation function does not uniquely determine the payments and is unlikely to admit a simple characterization. In contrast, recall that monotonicity characterizes the allocation function of truthful mechanisms. Our main technical effort is invested in determining whether the auctioneer can exploit the preference for truth-telling of the players to extract more revenue comparing to truthful mechanisms. We show that the auctioneer can extract more revenue when the values of the players are correlated, even when there are only two players. However, we show that truthful mechanisms are revenue-maximizing even among moral ones when the values of the players are independently drawn from certain identical distributions. As a by product we get an alternative proof to Myerson's characterization in the settings that we consider. We flesh out this approach by providing an alternative proof to Myerson's characterization that does not involve moral mechanisms whenever the values are independently drawn from regular distributions
    • …
    corecore