3,206 research outputs found

    Transport properties of graphene quantum dots

    Full text link
    In this work we present a theoretical study of transport properties of a double crossbar junction composed by segments of graphene ribbons with different widths forming a graphene quantum dot structure. The systems are described by a single-band tight binding Hamiltonian and the Green's function formalism using real space renormalization techniques. We show calculations of the local density of states, linear conductance and I-V characteristics. Our results depict a resonant behavior of the conductance in the quantum dot structures which can be controlled by changing geometrical parameters such as the nanoribbon segments widths and relative distance between them. By applying a gate voltage on determined regions of the structure, it is possible to modulate the transport response of the systems. We show that negative differential resistance can be obtained for low values of gate and bias voltages applied.Comment: 9 pages, 9 figures, accepted to Phys. Rev.

    Time Dependent Current Oscillations Through a Quantum Dot

    Full text link
    Time dependent phenomena associated to charge transport along a quantum dot in the charge quantization regime is studied. Superimposed to the Coulomb blockade behaviour the current has novel non-linear properties. Together with static multistabilities in the negative resistance region of the I-V characteristic curve, strong correlations at the dot give rise to self-sustained current and charge oscillations. Their properties depend upon the parameters of the quantum dot and the external applied voltages.Comment: 4 pages, 3 figures; to appear in PR

    A mesoscopic ring as a XNOR gate: An exact result

    Full text link
    We describe XNOR gate response in a mesoscopic ring threaded by a magnetic flux Ď•\phi. The ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, viz, VaV_a and VbV_b, are applied in one arm of the ring which are treated as the inputs of the XNOR gate. The calculations are based on the tight-binding model and the Green's function method, which numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strength, magnetic flux and gate voltages. Our theoretical study shows that, for a particular value of Ď•\phi (=Ď•0/2=\phi_0/2) (Ď•0=ch/e\phi_0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if both the two inputs to the gate are the same, while if one but not both inputs are high (1), a low output current (0) results. It clearly exhibits the XNOR gate behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure

    Conductance and persistent current of a quantum ring coupled to a quantum wire under external fields

    Full text link
    The electronic transport of a noninteracting quantum ring side-coupled to a quantum wire is studied via a single-band tunneling tight-binding Hamiltonian. We found that the system develops an oscillating band with antiresonances and resonances arising from the hybridization of the quasibound levels of the ring and the coupling to the quantum wire. The positions of the antiresonances correspond exactly to the electronic spectrum of the isolated ring. Moreover, for a uniform quantum ring the conductance and the persistent current density were found to exhibit a particular odd-even parity related with the ring-order. The effects of an in-plane electric field was also studied. This field shifts the electronic spectrum and damps the amplitude of the persistent current density. These features may be used to control externally the energy spectra and the amplitude of the persistent current.Comment: Revised version, 7 pages and 9 figures. To appear in Phys. Rev.

    Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana

    Full text link
    Marine diatoms are important primary producers that thrive in diverse and dynamic environments. They do so, in theory, by sensing changing conditions and adapting their physiology accordingly. Using the model species Thalassiosira pseudonana, we conducted a detailed physiological and transcriptomic survey to measure the recurrent transcriptional changes that characterize typical diatom growth in batch culture. Roughly 40% of the transcriptome varied significantly and recurrently, reflecting large, reproducible cell-state transitions between four principal states: (i) "dawn," following 12 h of darkness; (ii ) "dusk," following 12 h of light; (iii ) exponential growth and nutrient repletion; and (iv) stationary phase and nutrient depletion. Increases in expression of thousands of genes at the end of the reoccurring dark periods (dawn), including those involved in photosynthesis (e.g., ribulose-1,5- bisphosphate carboxylase oxygenase genes rbcS and rbcL), imply large-scale anticipatory circadian mechanisms at the level of gene regulation. Repeated shifts in the transcript levels of hundreds of genes encoding sensory, signaling, and regulatory functions accompanied the four cell-state transitions, providing a preliminary map of the highly coordinated gene regulatory program under varying conditions. Several putative light sensing and signaling proteins were associated with recurrent diel transitions, suggesting that these genes may be involved in light-sensitive and circadian regulation of cell state. These results begin to explain, in comprehensive detail, how the diatom gene regulatory program operates under varying environmental conditions. Detailed knowledge of this dynamic molecular process will be invaluable for new hypothesis generation and the interpretation of genetic, environmental, and metatranscriptomic data from field studies

    Accretion vs. colliding wind models for the gamma-ray binary LS I + 61 303: An assessment

    Get PDF
    Context. LS I +61 303 is a puzzling Be/X-ray binary with variable gamma-ray emission up to TeV energies. The nature of the compact object and the origin of the high-energy emission are unclear. One family of models invokes particle acceleration in shocks from the collision between the B-star wind and a relativistic pulsar wind, whereas another centers on a relativistic jet powered by accretion from the Be star decretion disc onto a black hole. Recent high-resolution radio observations showing a putative "cometary tail" pointing away from the Be star near periastron have been cited as support for the pulsar-wind model. Aims. We wish to carry out a quantitative assessment of these competing models. Methods. We apply a "Smoothed Particle Hydrodynamics" (SPH) code in 3D dynamical simulations for both the pulsar-windinteraction and accretion-jet models. The former yields a dynamical description of the shape of the wind-wind interaction surface. The latter provides a dynamical estimation of the accretion rate under a variety of conditions, and how this varies with orbital phase. Results. The results allow critical evaluation of how the two distinct models confront the data in various wavebands. When one accounts for the 3D dynamical wind interaction under realistic constraints for the relative strength of the B-star and pulsar winds, the resulting form of the interaction front does not match the putative "cometary tail" claimed from radio observations. On the other hand, dynamical simulations of the accretion-jet model indicate that the orbital phase variation of accretion power includes a secondary broad peak well away from periastron, thus providing a plausible way to explain the observed TeV gamma ray emission toward apastron. Conclusions. Contrary to previous claims, the colliding-wind model is not clearly established for LSI +61 303, whereas the accretionjet model can reproduce many key characteristics, such as required energy budget, lightcurve, and spectrum of the observed TeV gamma-ray emission.Facultad de Ciencias AstronĂłmicas y GeofĂ­sicasInstituto Argentino de RadioastronomĂ­
    • …
    corecore