133 research outputs found
The strength of the radial-breathing mode in single-walled carbon nanotubes
We show by ab initio calculations that the electron-phonon coupling matrix
element M of the radial breathing mode in single-walled carbon nanotubes
depends strongly on tube chirality. For nanotubes of the same diameter the
coupling strength |M|^2 is up to one order of magnitude stronger for zig-zag
than for armchair tubes. For (n,m) tubes M depends on the value of (n-m) mod 3,
which allows to discriminate semiconducting nano tubes with similar diameter by
their Raman scattering intensity. We show measured resonance Raman profiles of
the radial breathing mode which support our theoretical predictions
ab inito local vibrational modes of light impurities in silicon
We have developed a formulation of density functional perturbation theory for
the calculation of vibrational frequencies in molecules and solids, which uses
numerical atomic orbitals as a basis set for the electronic states. The
(harmonic) dynamical matrix is extracted directly from the first order change
in the density matrix with respect to infinitesimal atomic displacements from
the equilibrium configuration. We have applied this method to study the
vibrational properties of a number of hydrogen-related complexes and light
impurities in silicon. The diagonalization of the dynamical matrix provides the
vibrational modes and frequencies, including the local vibrational modes (LVMs)
associated with the defects. In addition to tests on simple molecules, results
for interstitial hydrogen, hydrogen dimers, vacancy-hydrogen and
self-interstitial-hydrogen complexes, the boron-hydrogen pair, substitutional
C, and several O-related defects in c-Si are presented. The average error
relative to experiment for the aprox.60 predicted LVMs is about 2% with most
highly harmonic modes being extremely close and the more anharmonic ones within
5-6% of the measured values.Comment: 18 pages, 1 figur
First-principles characterization of the electronic structure of the molecular superconductor beta-(BEDT-TTF)2IBr2
The electronic structure of the molecular superconductor β−(BEDT−TTF)2IBr2 has been studied by means of first-principles density functional calculations. The calculated transverse cross section of the Fermi surface is in excellent agreement with that reconstructed from magnetoresistance measurements. It is shown that the cylindrical Fermi surface exhibits warping (the dispersion along the interlayer direction is of the order of 0.8–1.7 % of the dispersion in the conducting plane) and that it does not contain any additional small pocket. These features provide support for a recent proposal concerning the much debated question of the origin of the slow magnetoresistance oscillations exhibited by this material.Peer reviewe
Vibrational properties of amorphous silicon from tight-binding O(N) calculation
We present an O(N) algorithm to study the vibrational properties of amorphous
silicon within the framework of tight-binding approach. The dynamical matrix
elements have been evaluated numerically in the harmonic approximation
exploiting the short-range nature of the density matrix to calculate the
vibrational density of states which is then compared with the same obtained
from a standard O() algorithm. For the purpose of illustration, an
1000-atom model is studied to calculate the localization properties of the
vibrational eigenstates using the participation numbers calculation.Comment: 5 pages including 5 ps figures; added a figure and a few references;
accepted in Phys. Rev.
Efficient tight-binding Monte Carlo structural sampling of complex materials
While recent work towards the development of tight-binding and ab-initio
algorithms has focused on molecular dynamics, Monte Carlo methods can often
lead to better results with relatively little effort. We present here a
multi-step Monte Carlo algorithm that makes use of the possibility of quickly
evaluating local energies. For the thermalization of a 1000-atom configuration
of {\it a}-Si, this algorithm gains about an order of magnitude in speed over
standard molecular dynamics. The algorithm can easily be ported to a wide range
of materials and can be dynamically optimized for a maximum efficiency.Comment: 5 pages including 3 postscript figure
Structural relaxations in electronically excited poly(para-phenylene)
Structural relaxations in electronically excited poly(para-phenylene) are
studied using many-body perturbation theory and density-functional-theory
methods. A sophisticated description of the electron-hole interaction is
required to describe the energies of the excitonic states, but we show that the
structural relaxations associated with exciton formation can be obtained quite
accurately within a constrained density-functional-theory approach. We find
that the structural relaxations in the low-energy excitonic states extend over
about 8 monomers, leading to an energy reduction of 0.22 eV and a Stokes shift
of 0.40 eV.Comment: 4 pages, 3 figure
Generalization of the density-matrix method to a non-orthogonal basis
We present a generalization of the Li, Nunes and Vanderbilt density-matrix
method to the case of a non-orthogonal set of basis functions. A representation
of the real-space density matrix is chosen in such a way that only the overlap
matrix, and not its inverse, appears in the energy functional. The generalized
energy functional is shown to be variational with respect to the elements of
the density matrix, which typically remains well localized.Comment: 11 pages + 2 postcript figures at the end (search for -cut here
A new multi-center approach to the exchange-correlation interactions in ab initio tight-binding methods
A new approximate method to calculate exchange-correlation contributions in
the framework of first-principles tight-binding molecular dynamics methods has
been developed. In the proposed scheme on-site (off-site) exchange-correlation
matrix elements are expressed as a one-center (two-center) term plus a {\it
correction} due to the rest of the atoms. The one-center (two-center) term is
evaluated directly, while the {\it correction} is calculated using a variation
of the Sankey-Niklewski \cite{Sankey89} approach generalized for arbitrary
atomic-like basis sets. The proposed scheme for exchange-correlation part
permits the accurate and computationally efficient calculation of corresponding
tight-binding matrices and atomic forces for complex systems. We calculate bulk
properties of selected transition (W,Pd), noble (Au) or simple (Al) metals, a
semiconductor (Si) and the transition metal oxide Ti with the new method
to demonstrate its flexibility and good accuracy.Comment: 17 pages, 5 figure
Efficient index handling of multidimensional periodic boundary conditions
An efficient method is described to handle mesh indexes in multidimensional
problems like numerical integration of partial differential equations, lattice
model simulations, and determination of atomic neighbor lists. By creating an
extended mesh, beyond the periodic unit cell, the stride in memory between
equivalent pairs of mesh points is independent of their position within the
cell. This allows to contract the mesh indexes of all dimensions into a single
index, avoiding modulo and other implicit index operations.Comment: 2 pages, 0 figure
- …