7 research outputs found

    CONSERVATION STATUS AND TRAJECTORIES OF CHANGE IN MARINE COASTAL ECOSYSTEMS

    Get PDF
    Marine environments play a central role for the planet, yet an understanding of how climate change is affecting marine ecosystems has been poorly developed. There is now growing evidence that human activities are driving rapid changes from local to global scale. In last decades, the rates of change is accelerating and may exceed the potential tolerance of many organisms to adapt. Ecological systems and marine organisms have evolved under different regimes of stress and disturbances both of natural and anthropic origin and intrinsically connected. No ecosystem is unaffected and marine coastal habitats are particularly sensitive due to the convergence of multiple stressors. The present work attempts to investigate how variable patterns of stress and disturbance influence the change in marine ecosystems, looking at two iconic coastal habitats: seagrass beds and coral reefs. Effects due to the anthropogenic pressure and a severe storm are here investigated as stress and disturbance respectively, on the endemic Mediterranean seagrass Posidonia oceanica. Thermal anomalies causing repeated coral bleaching events are considered as disturbances on Maldivian coral reefs, while the reduced pH environment that is created at shallow hydrothermal vents of North Sulawesi (Indonesia) is seen as a stress simulating climate and human impact on benthic habitats. The study of change in coastal ecosystems has been carried out by means of several approaches including the comparison with long-time series, the use of indicators able to return a value of ecological status, retrospective analyses and modelling. The present work confirms the complexity of the interactions between stresses and disturbances, different in scale and intensity, operating on a same ecosystem. The increase in seawater temperature starting from the 1980-90s can be identified as a common driver of change in both seagrass meadows and coral reefs ecosystems. In P. oceanica meadows of the Ligurian Sea, anthropic pressures remain the primary causes of impact, although, high intensity, pulse disturbances demonstrated that a single event is able to cause the same loss resulting from hundreds of years of chronic stress. Benthic habitats in close proximity to hydrothermal vents at tropical latitudes seem not negatively affected by the reduced pH as a chronic stress, while, in Maldivian coral reefs, the ability to cope with thermal disturbances seems to be dependent on coral genera. Benthic ecosystems could develop a certain adjustment capacity to chronic stress to the detriment of an enhanced sensitivity towards disturbances but this is of concerns regarding the predicted increase of high intensity disturbances due to climate change. Moreover, chronic stress and disturbances invariably co-occur, so it becomes difficult to assess which may be the proximate cause of ecosystem change. Data on benthic communities suggest that marine habitats are experiencing phase-shifts toward alternative and unknown states. Consequently, future marine habitats will likely lose their original features acquiring a new different shape. Continuing studies and long-term series of data will remain the most effective tool to validate these predictions and evaluate temporal patterns

    Multiple indices on different habitats and descriptors provide consistent assessments of environmental quality in a marine protected area

    Get PDF
    In the last decades, climate change and human pressures have increasingly and dramatically impacted the ocean worldwide, calling for urgent actions to safeguard coastal marine ecosystems. The European Commission, in particular, has set ambitious targets for member states with two major directives, the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD), both designed to protect the marine environment in EU waters. Diverse biotic indices have accordingly been developed to assess water and habitat quality. The WFD adopts four Biological Quality Elements (BQEs), whereas the MSFD recommends a set of eleven qualitative descriptors. The borderline between water quality and habitat quality is hard to trace and so far most assessments have involved the use of a few indices and were mainly related to a single BQE or qualitative descriptor. In this study, thanks to the availability of a large dataset encompassing a wide array of descriptors, we compared the performance of 11 biotic indices relative to three habitats/biotic components (reefs, seagrass, and fish) of the Marine Protected Area (MPA) of Capo Carbonara (SE Sardinia, Italy). The aim was to assess whether the indices were consistent in defining the environmental status in the MPA investigated. We used the graphical approach RESQUE (REsilience and QUality of Ecosystem), which enabled us to obtain a single and comprehensive measure of the status of the environment by integrating several metrics. This approach was applied here to different habitats for the first time. All indices were consistent with each other in confirming the good status of Capo Carbonara MPA. The use of RESQUE provided insights to interpret the differences between water quality, defined according to the WFD, and habitat quality, defined according to the MSFD. Differences between the two EU directives, in terms of either requirements or goals, have long been discussed but the present study highlights for the first time that they are congruent in their assessment of the environmental status of marine ecosystems

    An integrated assessment of the Good Environmental Status of Mediterranean Marine Protected Areas

    Get PDF
    Este artículo contiene 11 páginas, 2 figuras, 2 tablas.Local, regional and global targets have been set to halt marine biodiversity loss. Europe has set its own policy targets to achieve Good Environmental Status (GES) of marine ecosystems by implementing the Marine Strategy Framework Directive (MSFD) across member states. We combined an extensive dataset across five Mediterranean ecoregions including 26 Marine Protected Areas (MPAs), their reference unprotected areas, and a no-trawl case study. Our aim was to assess if MPAs reach GES, if their effects are local or can be detected at ecoregion level or up to a Mediterranean scale, and which are the ecosystem components driving GES achievement. This was undertaken by using the analytical tool NEAT (Nested Environmental status Assessment Tool), which allows an integrated assessment of the status of marine systems. We adopted an ecosystem approach by integrating data from several ecosystem components: the seagrass Posidonia oceanica, macroalgae, sea urchins and fish. Thresholds to define the GES were set by dedicated workshops and literature review. In the Western Mediterranean, most MPAs are in good/high status, with P. oceanica and fish driving this result within MPAs. However, GES is achieved only at a local level, and the Mediterranean Sea, as a whole, results in a moderate environmental status. Macroalgal forests are overall in bad condition, confirming their status at risk. The results are significantly affected by the assumption that discrete observations over small spatial scales are representative of the total extension investigated. This calls for large-scale, dedicated assessments to realistically detect environmental status changes under different conditions. Understanding MPAs effectiveness in reaching GES is crucial to assess their role as sentinel observatories of marine systems. MPAs and trawling bans can locally contribute to the attainment of GES and to the fulfillment of the MSFD objectives. Building confidence in setting thresholds between GES and non-GES, investing in long-term monitoring, increasing the spatial extent of sampling areas, rethinking and broadening the scope of complementary tools of protection (e.g., Natura 2000 Sites), are indicated as solutions to ameliorate the status of the basin.This article was undertaken within the COST Action 15121 MarCons (http://www.marcons-cost.eu, European Cooperation in Science and Technology), the Interreg MED AMAre Plus (Ref: 8022) and the project PO FEAMP 2014-2020 Innovazione, sviluppo e sostenibilita ` nel settore della pesca e dell’acquacoltura per la Regione Campania (ISSPA 2.51). M.C.U., A.B. have been funded by the project MEDREGION (European Commission DG ENV/MSFD, 2018 call, Grant Agreement 110661/ 2018/794286/SUB/ENV.C2). Aegean Sea data were retrieved from the project PROTOMEDEA (www.protomedea.eu), funded by DG for Marine Affairs and Fisheries of the EC, under Grant Agreement SI2.721917. JB acknowledges support from the Spanish Ministry of Science and Innovation (Juan de la Cierva fellowship FJC 2018-035566-I).With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S).Peer reviewe

    Patterns of change in coral reef communities of a remote Maldivian atoll revisited after eleven years

    No full text
    Coral reefs are exposed worldwide to several global and local human pressures including climate change and coastal development. Assessing the effects of such pressures on coral reef communities and the changes they undergo over time is mandatory to understand their possible future trends. Nonetheless, some coral reefs receive no or little scientific attention, as in the case of Huvadhoo Atoll that is an under-studied region in the southernmost area of the Maldives (Indian Ocean). This study analyzes the changes occurring over time in eight coral reefs (four inner reefs within the atoll lagoon and four outer reefs on the ocean side) at Huvadhoo Atoll, firstly surveyed in 2009 and revisited in 2020 using the same field methods. The cover of 23 morphological benthic descriptors (including different growth forms of Acropora) was taken into account and then grouped into three categories (i.e., hard coral, other benthic taxa and abiotic descriptors) to analyze the change in the composition of the coral reef community. Significant changes (e.g., increase in hard coral cover and decrease in abiotic descriptors) were observed in the inner reefs as compared to the outer reefs, which showed less variability. A significant decrease in tabular Acropora cover was observed in both inner and outer reefs, with possible negative effects on reef complexity and functioning. By comparing two time periods and two reef types, this study provides novel information on the change over time in the community composition of Maldivian coral reefs

    Troubles Never Come Alone: Outcome of Multiple Pressures on a Temperate Rocky Reef

    No full text
    Climate change is affecting rocky reef ecosystems in a multitude of ways at global scale. During summer 2018, the rocky reef communities of Portofino Marine Protected Area (MPA) (NW Mediterranean) were affected by thermal anomalies, a mucilaginous event, and the seasonal expansion of Caulerpa cylindracea. Moreover, a severe storm occurred on 29 October. The effects of these pressures on the rocky reef communities were analysed at different depths (10 m, 20 m, 30 m, and 40 m) and at three times (June, October, December) to evaluate change at short temporal scale. Portofino MPA’s communities have significantly changed: thermal anomalies mostly affected the biota living above the summer thermocline (ca 20 m depth); mucilaginoius aggregates first impacted the communities in shallow waters and only later those in deep waters, where they typically fall in late summer; the greatest impact by Caulerpa cylindracea was detected at 20 m depth; the storm directly impacted communities in shallow and intermediate waters by uprooting algal species, while it had indirect effects at greater depths through sediment redistribution. Disentangling the effects of multiple pressures on coastal ecosystems is one of the most pressing goals in marine ecology and biodiversity conservation. This study represents an attempt in this direction as applied to the short-term dynamics of rocky reef communities under a climate change scenario

    Biodiversity Monitoring in Mediterranean Marine Protected Areas: Scientific and Methodological Challenges

    No full text
    Biodiversity is a portmanteau word to indicate the variety of life at all levels from genes to ecosystems, but it is often simplistically equated to species richness; the word ecodiversity has thus been coined to address habitat variety. Biodiversity represents the core of the natural capital, and as such needs to be quantified and followed over time. Marine Protected Areas (MPAs) are a major tool for biodiversity conservation at sea. Monitoring of both species and habitat diversity in MPAs is therefore mandatory and must include both inventory and periodic surveillance activities. In the case of inventories, the ideal would be to census all species and all habitats, but while the latter goal can be within reach, the former seems unattainable. Species inventory should be commeasured to investigation effort, while habitat inventory should be based on mapping. Both inventories may profit from suitability spatial modelling. Periodic surveillance actions should privilege conspicuous species and priority habitats. Efficient descriptor taxa and ecological indices are recommended to evaluate environmental status. While it seems obvious that surveillance activities should be carried out with regular recurrence, diachronic inventories and mapping are rarely carried out. Time series are of prime importance to detect marine ecosystem change even in the absence of direct human impacts

    A Tale of Two Sisters: The Southerner <i>Pinna rudis</i> Is Getting North after the Regional Extinction of the Congeneric <i>P. nobilis</i> (Mollusca: Bivalvia)

    No full text
    In the Mediterranean Sea, the bivalve genus Pinna is represented by two species: the endemic Pinna nobilis and the (sub)tropical Atlantic Pinna rudis. P. rudis is generally less common and mostly restricted to the warmer regions of the western Mediterranean. However, since a mass mortality event, caused by a pathogen infection, has brought P. nobilis to the brink of extinction, records of P. rudis have increased in several Mediterranean regions, where it had not been previously observed. This paper reports on the presence of several P. rudis individuals in the Ligurian Sea, the northernmost reach of this species in the western Mediterranean. P. rudis has become increasingly common between 2021 and 2023, with a total of 28 new records from seven localities along the Ligurian coast. The size of the individuals and their estimated growth rate (3.6 cm·a−1) indicated that a recruitment event most likely took place in summer 2020, when P. nobilis was no longer present in the area. Our observations suggest that the recruitment success of P. rudis increased following the decline of P. nobilis. However, considering the thermophilic nature of P. rudis, in all likelihood, the ongoing water warming is playing a crucial role in the successful establishment of this species in the Ligurian Sea. A full understanding of the recent range expansion of P. rudis in the Mediterranean is far from being achieved, and whether P. rudis will be able to fulfil the ecological role of P. nobilis is difficult to predict. Large scale monitoring remains the only effective way to know about the future of Pinnids in the Mediterranean Sea
    corecore