396 research outputs found

    Phase Transitions of Neural Networks

    Full text link
    The cooperative behaviour of interacting neurons and synapses is studied using models and methods from statistical physics. The competition between training error and entropy may lead to discontinuous properties of the neural network. This is demonstrated for a few examples: Perceptron, associative memory, learning from examples, generalization, multilayer networks, structure recognition, Bayesian estimate, on-line training, noise estimation and time series generation.Comment: Plenary talk for MINERVA workshop on mesoscopics, fractals and neural networks, Eilat, March 1997 Postscript Fil

    Retarded Learning: Rigorous Results from Statistical Mechanics

    Full text link
    We study learning of probability distributions characterized by an unknown symmetry direction. Based on an entropic performance measure and the variational method of statistical mechanics we develop exact upper and lower bounds on the scaled critical number of examples below which learning of the direction is impossible. The asymptotic tightness of the bounds suggests an asymptotically optimal method for learning nonsmooth distributions.Comment: 8 pages, 1 figur

    Efficient statistical inference for stochastic reaction processes

    Full text link
    We address the problem of estimating unknown model parameters and state variables in stochastic reaction processes when only sparse and noisy measurements are available. Using an asymptotic system size expansion for the backward equation we derive an efficient approximation for this problem. We demonstrate the validity of our approach on model systems and generalize our method to the case when some state variables are not observed.Comment: 4 pages, 2 figures, 2 tables; typos corrected, remark about Kalman smoother adde

    Statistical Mechanics of Learning in the Presence of Outliers

    Full text link
    Using methods of statistical mechanics, we analyse the effect of outliers on the supervised learning of a classification problem. The learning strategy aims at selecting informative examples and discarding outliers. We compare two algorithms which perform the selection either in a soft or a hard way. When the fraction of outliers grows large, the estimation errors undergo a first order phase transition.Comment: 24 pages, 7 figures (minor extensions added

    Field Theoretical Analysis of On-line Learning of Probability Distributions

    Full text link
    On-line learning of probability distributions is analyzed from the field theoretical point of view. We can obtain an optimal on-line learning algorithm, since renormalization group enables us to control the number of degrees of freedom of a system according to the number of examples. We do not learn parameters of a model, but probability distributions themselves. Therefore, the algorithm requires no a priori knowledge of a model.Comment: 4 pages, 1 figure, RevTe

    Statistical mechanics of random two-player games

    Full text link
    Using methods from the statistical mechanics of disordered systems we analyze the properties of bimatrix games with random payoffs in the limit where the number of pure strategies of each player tends to infinity. We analytically calculate quantities such as the number of equilibrium points, the expected payoff, and the fraction of strategies played with non-zero probability as a function of the correlation between the payoff matrices of both players and compare the results with numerical simulations.Comment: 16 pages, 6 figures, for further information see http://itp.nat.uni-magdeburg.de/~jberg/games.htm

    On-Line AdaTron Learning of Unlearnable Rules

    Full text link
    We study the on-line AdaTron learning of linearly non-separable rules by a simple perceptron. Training examples are provided by a perceptron with a non-monotonic transfer function which reduces to the usual monotonic relation in a certain limit. We find that, although the on-line AdaTron learning is a powerful algorithm for the learnable rule, it does not give the best possible generalization error for unlearnable problems. Optimization of the learning rate is shown to greatly improve the performance of the AdaTron algorithm, leading to the best possible generalization error for a wide range of the parameter which controls the shape of the transfer function.)Comment: RevTeX 17 pages, 8 figures, to appear in Phys.Rev.

    On-line learning of non-monotonic rules by simple perceptron

    Full text link
    We study the generalization ability of a simple perceptron which learns unlearnable rules. The rules are presented by a teacher perceptron with a non-monotonic transfer function. The student is trained in the on-line mode. The asymptotic behaviour of the generalization error is estimated under various conditions. Several learning strategies are proposed and improved to obtain the theoretical lower bound of the generalization error.Comment: LaTeX 20 pages using IOP LaTeX preprint style file, 14 figure

    Interprofessional Health Team Communication About Hospital Discharge: An Implementation Science Evaluation Study

    Get PDF
    The Consolidated Framework for Implementation Research guided formative evaluation of the implementation of a redesigned interprofessional team rounding process. The purpose of the redesigned process was to improve health team communication about hospital discharge. Themes emerging from interviews of patients, nurses, and providers revealed the inherent value and positive characteristics of the new process, but also workflow, team hierarchy, and process challenges to successful implementation. The evaluation identified actionable recommendations for modifying the implementation process

    Thermal Equilibrium with the Wiener Potential: Testing the Replica Variational Approximation

    Full text link
    We consider the statistical mechanics of a classical particle in a one-dimensional box subjected to a random potential which constitutes a Wiener process on the coordinate axis. The distribution of the free energy and all correlation functions of the Gibbs states may be calculated exactly as a function of the box length and temperature. This allows for a detailed test of results obtained by the replica variational approximation scheme. We show that this scheme provides a reasonable estimate of the averaged free energy. Furthermore our results shed more light on the validity of the concept of approximate ultrametricity which is a central assumption of the replica variational method.Comment: 6 pages, 1 file LaTeX2e generating 2 eps-files for 2 figures automaticall
    • …
    corecore