2,611 research outputs found

    Dynamics of membranes with immobile inclusions

    Full text link
    Cell membranes are anchored to the cytoskeleton via immobile inclusions. We investigate the effect of such anchors on the in-plane dynamics of a fluid membrane and mobile inclusions (proteins) embedded in it. The immobile particles lead to a decreased diffusion coefficient of mobile ones and suppress the correlated diffusion of particle pairs. Due to the long-range, quasi-two-dimensional nature of membrane flows, these effects become significant at a low area fraction (below one percent) of immobile inclusions.Comment: 5 page

    On the Role of Initial Data in the Gravitational Collapse of Inhomogeneous Dust

    Full text link
    We consider here the gravitational collapse of a spherically symmetric inhomogeneous dust cloud described by the Tolman-Bondi models. By studying a general class of these models, we find that the end state of the collapse is either a black hole or a naked singularity, depending on the parameters of the initial density distribution, which are ρc\rho_{c}, the initial central density of the massive body, and R0R_0, the initial boundary. The collapse ends in a black hole if the dimensionless quantity β\beta constructed out of this initial data is greater than 0.0113, and it ends in a naked singularity if β\beta is less than this number. A simple interpretation of this result can be given in terms of the strength of the gravitational potential at the starting epoch of the collapse.Comment: Original title changed, numerical range of naked singularity corrected. Plain Tex File. 14 pages. To appear in Physical Review

    Weighing Super-Massive Black Holes with Narrow Fe Kα\alpha Line

    Full text link
    It has been suggested that the narrow cores of the Fe Kα\alpha emission lines in Active Galactic Nuclei (AGNs) are likely produced in the torus, the inner radius of which can be measured by observing the lag time between the VV and KK band flux variations. In this paper we compare the virial products of the infrared time lags and the narrow Fe Kα\alpha widths for 10 type 1 AGNs with the black hole masses from other techniques. We find the narrow Fe Kα\alpha line width is in average 2.60.4+0.9^{+0.9}_{-0.4} times broader than expected assuming an isotropic velocity distribution of the torus at the distance measured by the infrared lags. We propose the thick disk model of the torus could explain the observed larger line width. Another possibility is the contamination by emission from the broad line region or the outer accretion disk. Alternatively, the narrow iron line might originate from the inner most part of the obscuring torus within the sublimation radius, while the infrared emission from outer cooler part. We note the correlation between the black hole masses based on this new technique and those based on other known techniques is statistically insignificant. We argue that this could be attributed to the small sample size and the very large uncertainties in the measurements of iron K line widths. The next generation of X-ray observatories could help verify the origin of the narrow iron Kα\alpha line and the reliability of this new technique.Comment: 12 pages, 2 figures, 2 tables, Science China G, in pres

    Metal Enrichment in the Reionization Epoch

    Full text link
    The presence of elements heavier than helium ("metals") is of fundamental importance for a large number of astrophysical processes occurring in planet, star and galaxy formation; it also affects cosmic structure formation and evolution in several ways. Even a small amount of heavy elements can dramatically alter the chemistry of the gas, opening the path to complex molecules. Metals might enhance the ability of the gas to radiate away its thermal energy, thus favoring the formation of gravitationally bound objects; they can also condensate in a solid phase (dust grains), partly or totally blocking radiation from luminous sources. Finally, they represent useful tracers of energy deposition by stars and probe the physical properties of the environment by absorption or emission lines. Last, but certainly not least, life -- as we know it on Earth -- is tightly related to the presence of at least some of the heavy elements. In this pedagogical review I will concentrate on the connection between early metal enrichment and cosmic reionization. As we will see these two processes are intimately connected and their joint study might turn out to be fundamental in understanding the overall evolution of the Universe during the first billion years after the Big Bang, an epoch corresponding to redshifts z>6.Comment: Book chapter in Understanding the Epoch of Cosmic Reionization: Challenges and Progress, Springer International Publishing, Ed. Andrei Mesinger, ISBN 978-3-319-21956-1. arXiv admin note: text overlap with arXiv:astro-ph/0007248 by other author

    Physical nature of the central singularity in spherical collapse

    Full text link
    We examine here the nature of the central singularity forming in the spherically symmetric collapse of a dust cloud and it is shown that this is always a strong curvature singularity where gravitational tidal forces diverge powerfully. An important consequence is that the nature of the naked singularity forming in the dust collapse turns out to be stable against the perturbations in the initial data from which the collapse commences.Comment: Latex file, 11 pages, 2 figures, Updated version to match the published version in PR

    Phase Transitions in Rotating Neutron Stars

    Get PDF
    As rotating neutron stars slow down, the pressure and the density in the core region increase due to the decreasing centrifugal forces and phase transitions may occur in the center. We extract the analytic behavior near the critical angular velocity Ω0\Omega_0, where the phase transitions occur in the center of a neutron star, and calculate the moment of inertia, angular velocity, rate of slow down, braking index, etc. For a first order phase transition these quantities have a characteristic behavior, e.g., the braking index diverges as (Ω0Ω)1/2\sim(\Omega_0-\Omega)^{-1/2}. Observational consequences for first, second and other phase transitions are discussed.Comment: 5 pages, one figure included, revtex latex styl

    Evolving Einstein's Field Equations with Matter: The ``Hydro without Hydro'' Test

    Get PDF
    We include matter sources in Einstein's field equations and show that our recently proposed 3+1 evolution scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravitational waveforms from strong-field sources dominated by longitudinal fields, like binary neutron stars: approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be evolved without having to re-solve the hydrodynamical equations (``hydro without hydro'').Comment: 4 postscript figures. Submitted to Phys. Rev. D15 as a Brief Repor
    corecore