28 research outputs found

    Distal airway dysfunction identifies pulmonary inflammation in asymptomatic smokers

    No full text
    Smoking induced inflammation leads to distal airway destruction. However, the relationship between distal airway dysfunction and inflammation remains unclear, particularly in smokers prior to the development of airway obstruction. Seven normal controls and 16 smokers without chronic obstructive pulmonary disease (COPD) were studied. Respiratory function was assessed using the forced oscillation technique (FOT). Abnormal FOT was defined as elevated resistance at 5 Hz (R5). Parameters reflecting distal lung function included frequency dependence of resistance (R5–20) and dynamic elastance (X5). Inflammation was quantified in concentrated bronchoalveolar lavage utilising cell count differential and cytokines expressed as concentration per mL epithelial lining fluid. All control subjects and seven smokers had normal R5. Nine smokers had elevated R5 with abnormal R5–20 and X5, indicating distal lung dysfunction. The presence of abnormal FOT was associated with two-fold higher lymphocyte and neutrophil counts (p0.47, p<0.01). Distal airway dysfunction in smokers without COPD identifies the presence of distal lung inflammation that parallel reported observations in established COPD. These findings were not evident on routine pulmonary function testing and may allow the identification of smokers at risk of progression to COPD

    Pulmonary Vascular Congestion: A Mechanism for Distal Lung Unit Dysfunction in Obesity.

    No full text
    RATIONALE:Obesity is characterized by increased systemic and pulmonary blood volumes (pulmonary vascular congestion). Concomitant abnormal alveolar membrane diffusion suggests subclinical interstitial edema. In this setting, functional abnormalities should encompass the entire distal lung including the airways. OBJECTIVES:We hypothesize that in obesity: 1) pulmonary vascular congestion will affect the distal lung unit with concordant alveolar membrane and distal airway abnormalities; and 2) the degree of pulmonary congestion and membrane dysfunction will relate to the cardiac response. METHODS:54 non-smoking obese subjects underwent spirometry, impulse oscillometry (IOS), diffusion capacity (DLCO) with partition into membrane diffusion (DM) and capillary blood volume (VC), and cardiac MRI (n = 24). Alveolar-capillary membrane efficiency was assessed by calculation of DM/VC. MEASUREMENTS AND MAIN RESULTS:Mean age was 45±12 years; mean BMI was 44.8±7 kg/m2. Vital capacity was 88±13% predicted with reduction in functional residual capacity (58±12% predicted). Despite normal DLCO (98±18% predicted), VC was elevated (135±31% predicted) while DM averaged 94±22% predicted. DM/VC varied from 0.4 to 1.4 with high values reflecting recruitment of alveolar membrane and low values indicating alveolar membrane dysfunction. The most abnormal IOS (R5 and X5) occurred in subjects with lowest DM/VC (r2 = 0.31, p<0.001; r2 = 0.34, p<0.001). Cardiac output and index (cardiac output / body surface area) were directly related to DM/VC (r2 = 0.41, p<0.001; r2 = 0.19, p = 0.03). Subjects with lower DM/VC demonstrated a cardiac output that remained in the normal range despite presence of obesity. CONCLUSIONS:Global dysfunction of the distal lung (alveolar membrane and distal airway) is associated with pulmonary vascular congestion and failure to achieve the high output state of obesity. Pulmonary vascular congestion and consequent fluid transudation and/or alterations in the structure of the alveolar capillary membrane may be considered often unrecognized causes of airway dysfunction in obesity

    Top Panel: R<sub>5−20</sub> at baseline and during voluntary inflation.

    No full text
    <p>Data are mean ± SE. Dotted line represents the upper limit of normal. Bottom Panel: Individual values obtained during voluntary inflation are plotted as a function of the absolute EELV at which it was obtained. EELV is expressed as % predicted FRC. Data are shown for 50/71 patients in whom maneuvers were acceptable for analysis. Dotted line represents the upper limit of normal. (• = baseline ○ = voluntary inflation).</p

    Top Panel: R<sub>20</sub> at baseline and during voluntary inflation.

    No full text
    <p>Data are mean ± SE. Dotted line represents the upper limit of normal. Bottom Panel: Individual values for specific conductance at 20 Hz (SG<sub>rs</sub> @ 20 Hz) plotted as a function of the absolute EELV at which it was obtained. EELV is expressed as % predicted FRC. Dotted and solid lines represent the mean ±1.65 SD calculated from data obtained in normal subjects. (• = baseline ○ = voluntary inflation).</p

    Role of small airway dysfunction in unexplained exertional dyspnoea

    No full text
    Background Isolated small airway abnormalities may be demonstrable at rest in patients with normal spirometry; however, the relationship of these abnormalities to exertional symptoms remains uncertain. This study uses an augmented cardiopulmonary exercise test (CPET) to include evaluation of small airway function during and following exercise to unmask abnormalities not evident with standard testing in individuals with dyspnoea and normal spirometry. Methods Three groups of subjects were studied: 1) World Trade Center (WTC) dust exposure (n=20); 2) Clinical Referral (n=15); and Control (n=13). Baseline evaluation included respiratory oscillometry. Airway function during an incremental workload CPET was assessed by: 1) tidal flow versus volume curves during exercise to assess for dynamic hyperinflation and expiratory flow limitation; and 2) post-exercise spirometry and oscillometry to evaluate for airway hyperreactivity. Results All subjects demonstrated normal baseline forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC). Dyspnoea was reproduced during CPET in WTC and Clinical Referral groups versus Control without abnormality in respiratory pattern and minute ventilation. Tidal flow–volume curves uncovered expiratory flow limitation and/or dynamic hyperinflation with increased prevalence in WTC and Clinical Referral versus Control (55%, 87% versus 15%; p<0.001). Post-exercise oscillometry uncovered small airway hyperreactivity with increased prevalence in WTC and Clinical Referral versus Control (40%, 47% versus 0%, p<0.05). Conclusions We uncovered mechanisms for exertional dyspnoea in subject with normal spirometry that was attributable to either small airway dysfunction during exercise and/or small airway hyperreactivity following exercise. The similarity of findings in WTC environmentally exposed and clinically referred cohorts suggests broad relevance for these evaluations
    corecore