1,988 research outputs found

    Spectral Simplicity of Apparent Complexity, Part II: Exact Complexities and Complexity Spectra

    Full text link
    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainty, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. An appendix presents spectral decomposition calculations for one example in full detail.Comment: 27 pages, 12 figures, 2 tables; most recent version at http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt2.ht

    Reversible transformations from pure to mixed states, and the unique measure of information

    Get PDF
    Transformations from pure to mixed states are usually associated with information loss and irreversibility. Here, a protocol is demonstrated allowing one to make these transformations reversible. The pure states are diluted with a random noise source. Using this protocol one can study optimal transformations between states, and from this derive the unique measure of information. This is compared to irreversible transformations where one does not have access to noise. The ideas presented here shed some light on attempts to understand entanglement manipulations and the inevitable irreversibility encountered there where one finds that mixed states can contain "bound entanglement".Comment: 10 pages, no figures, revtex4, table added, to appear in Phys. Rev.

    Notes on the integration of numerical relativity waveforms

    Full text link
    A primary goal of numerical relativity is to provide estimates of the wave strain, hh, from strong gravitational wave sources, to be used in detector templates. The simulations, however, typically measure waves in terms of the Weyl curvature component, ψ4\psi_4. Assuming Bondi gauge, transforming to the strain hh reduces to integration of ψ4\psi_4 twice in time. Integrations performed in either the time or frequency domain, however, lead to secular non-linear drifts in the resulting strain hh. These non-linear drifts are not explained by the two unknown integration constants which can at most result in linear drifts. We identify a number of fundamental difficulties which can arise from integrating finite length, discretely sampled and noisy data streams. These issues are an artifact of post-processing data. They are independent of the characteristics of the original simulation, such as gauge or numerical method used. We suggest, however, a simple procedure for integrating numerical waveforms in the frequency domain, which is effective at strongly reducing spurious secular non-linear drifts in the resulting strain.Comment: 23 pages, 10 figures, matches final published versio

    Unambiguous comparison of the states of multiple quantum systems

    Full text link
    We consider N quantum systems initially prepared in pure states and address the problem of unambiguously comparing them. One may ask whether or not all NN systems are in the same state. Alternatively, one may ask whether or not the states of all N systems are different. We investigate the possibility of unambiguously obtaining this kind of information. It is found that some unambiguous comparison tasks are possible only when certain linear independence conditions are satisfied. We also obtain measurement strategies for certain comparison tasks which are optimal under a broad range of circumstances, in particular when the states are completely unknown. Such strategies, which we call universal comparison strategies, are found to have intriguing connections with the problem of quantifying the distinguishability of a set of quantum states and also with unresolved conjectures in linear algebra. We finally investigate a potential generalisation of unambiguous state comparison, which we term unambiguous overlap filtering.Comment: 20 pages, no figure

    Quantum information can be negative

    Full text link
    Given an unknown quantum state distributed over two systems, we determine how much quantum communication is needed to transfer the full state to one system. This communication measures the "partial information" one system needs conditioned on it's prior information. It turns out to be given by an extremely simple formula, the conditional entropy. In the classical case, partial information must always be positive, but we find that in the quantum world this physical quantity can be negative. If the partial information is positive, its sender needs to communicate this number of quantum bits to the receiver; if it is negative, the sender and receiver instead gain the corresponding potential for future quantum communication. We introduce a primitive "quantum state merging" which optimally transfers partial information. We show how it enables a systematic understanding of quantum network theory, and discuss several important applications including distributed compression, multiple access channels and multipartite assisted entanglement distillation (localizable entanglement). Negative channel capacities also receive a natural interpretation

    Signal velocity, causality, and quantum noise in superluminal light pulse propagation

    Full text link
    We consider pulse propagation in a linear anomalously dispersive medium where the group velocity exceeds the speed of light in vacuum (c) or even becomes negative. A signal velocity is defined operationally based on the optical signal-to-noise ratio, and is computed for cases appropriate to the recent experiment where such a negative group velocity was observed. It is found that quantum fluctuations limit the signal velocity to values less than c.Comment: 4 Journal pages, 3 figure

    The Resource Theory of Quantum States Out of Thermal Equilibrium

    Get PDF
    The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here we return to the basic questions of thermodynamics using the formalism of resource theories developed in quantum information theory and show that the free energy of thermodynamics emerges naturally from the resource theory of energy-preserving transformations. Specifically, the free energy quantifies the amount of useful work which can be extracted from asymptotically-many copies of a quantum system when using only reversible energy-preserving transformations and a thermal bath at fixed temperature. The free energy also quantifies the rate at which resource states can be reversibly interconverted asymptotically, provided that a sublinear amount of coherent superposition over energy levels is available, a situation analogous to the sublinear amount of classical communication required for entanglement dilution.Comment: 4.5 pages main text, 12 pages appendix; v3: improvements to presentation of the main resul

    All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering

    Get PDF
    Einstein-Podolsky-Rosen steering is a form of quantum nonlocality intermediate between entanglement and Bell nonlocality. Although Schr\"odinger already mooted the idea in 1935, steering still defies a complete understanding. In analogy to "all-versus-nothing" proofs of Bell nonlocality, here we present a proof of steering without inequalities rendering the detection of correlations leading to a violation of steering inequalities unnecessary. We show that, given any two-qubit entangled state, the existence of certain projective measurement by Alice so that Bob's normalized conditional states can be regarded as two different pure states provides a criterion for Alice-to-Bob steerability. A steering inequality equivalent to the all-versus-nothing proof is also obtained. Our result clearly demonstrates that there exist many quantum states which do not violate any previously known steering inequality but are indeed steerable. Our method offers advantages over the existing methods for experimentally testing steerability, and sheds new light on the asymmetric steering problem.Comment: 7 pages, 2 figures. Accepted in Sci. Re

    Signal Processing

    Get PDF
    Contains research objectives and reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E
    corecore