5 research outputs found

    Combined effect of genetic polymorphisms in phase I and II biotransformation enzymes on head and neck cancer risk

    No full text
    BACKGROUND: Combinations of genetic polymorphisms in biotransformation enzymes might modify the individual risk for head and neck cancer. METHODS: Blood from 432 patients with head and neck cancer and 437 controls was investigated for genetic polymorphisms in 9 different phase I and II biotransformation enzymes. Analysis of the risk-modifying effect was performed according to predicted enzyme activities, based on genetic polymorphisms in the corresponding genes. RESULTS: Combination of polymorphisms in COX-2 or EPHX1 with high activity polymorphisms in UGT1A1, UGT1A6, or UGT1A7 showed a risk-modulating effect in head and neck carcinogenesis, especially among heavy smokers and patients with laryngeal cancer. However, no additional effect for the combination of these polymorphisms was discovered when compared to the impact of polymorphism in UGT1A1, UGT1A6, and UGT1A7 individually. CONCLUSION: Predicted high activity polymorphisms in the phase II enzymes UGT1A1, UGT1A6, and UGT1A7 are associated with an increased risk of head and neck cancer

    A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, phase 3 trial

    No full text
    Background MiStent is a drug-eluting stent with a fully absorbable polymer coating containing and embedding a microcrystalline form of sirolimus into the vessel wall. It was developed to overcome the limitation of current durable polymer drug-eluting stents eluting amorphous sirolimus. The clinical effect of MiStent sirolimus-eluting stent compared with a durable polymer drug-eluting stents has not been investigated in a large randomised trial in an all-comer population. Methods We did a randomised, single-blind, multicentre, phase 3 study (DESSOLVE III) at 20 hospitals in Germany, France, Netherlands, and Poland. Eligible participants were any patients aged at least 18 years who underwent percutaneous coronary intervention in a lesion and had a reference vessel diameter of 2.50-3.75 mm. We randomly assigned patients (1: 1) to implantation of either a sirolimus-eluting bioresorbable polymer stent (MiStent) or an everolimus-eluting durable polymer stent (Xience). Randomisation was done by local investigators via web-based software with random blocks according to centre. The primary endpoint was a non-inferiority comparison of a device-oriented composite endpoint (DOCE)-cardiac death, target-vessel myocardial infarction, or clinically indicated target lesion revascularisation-between the groups at 12 months after the procedure assessed by intention-to-treat. A margin of 4.0% was defined for non-inferiority of the MiStent group compared with the Xience group. All participants were included in the safety analyses. This trial is registered with ClinicalTrials. gov, number NCT02385279. Findings Between March 20, and Dec 3, 2015, we randomly assigned 1398 patients with 2030 lesions; 703 patients with 1037 lesions were assigned to MiStent, of whom 697 received the index procedure, and 695 patients with 993 lesions were asssigned to Xience, of whom 690 received the index procedure. At 12 months, the primary endpoint had occurred in 40 patients (5.8%) in the sirolimus-eluting stent group and in 45 patients (6.5%) in the everolimus-eluting stent group (absolute difference -0.8% [95% CI -3.3 to 1.8], p(non-inferiority) = 0.0001). Procedural complications occurred in 12 patients (1.7%) in the sirolimus-eluting stent group and ten patients (1.4%) in the everolimus-eluting stent group; no clinical adverse events could be attributed to these dislodgements through a minimum of 12 months of follow-up. The rate of stent thrombosis, a safety indicator, did not differ between groups and was low in both treatment groups. Interpretation The sirolimus-eluting bioabsorbable polymer stent was non-inferior to the everolimus-eluting durable polymer stent for a device-oriented composite clinical endpoint at 12 months in an all-comer population. MiStent seems a reasonable alternative to other stents in clinical practic

    Ezetimibe added to statin therapy after acute coronary syndromes

    Get PDF
    BACKGROUND: Statin therapy reduces low-density lipoprotein (LDL) cholesterol levels and the risk of cardiovascular events, but whether the addition of ezetimibe, a nonstatin drug that reduces intestinal cholesterol absorption, can reduce the rate of cardiovascular events further is not known. METHODS: We conducted a double-blind, randomized trial involving 18,144 patients who had been hospitalized for an acute coronary syndrome within the preceding 10 days and had LDL cholesterol levels of 50 to 100 mg per deciliter (1.3 to 2.6 mmol per liter) if they were receiving lipid-lowering therapy or 50 to 125 mg per deciliter (1.3 to 3.2 mmol per liter) if they were not receiving lipid-lowering therapy. The combination of simvastatin (40 mg) and ezetimibe (10 mg) (simvastatin-ezetimibe) was compared with simvastatin (40 mg) and placebo (simvastatin monotherapy). The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, unstable angina requiring rehospitalization, coronary revascularization ( 6530 days after randomization), or nonfatal stroke. The median follow-up was 6 years. RESULTS: The median time-weighted average LDL cholesterol level during the study was 53.7 mg per deciliter (1.4 mmol per liter) in the simvastatin-ezetimibe group, as compared with 69.5 mg per deciliter (1.8 mmol per liter) in the simvastatin-monotherapy group (P<0.001). The Kaplan-Meier event rate for the primary end point at 7 years was 32.7% in the simvastatin-ezetimibe group, as compared with 34.7% in the simvastatin-monotherapy group (absolute risk difference, 2.0 percentage points; hazard ratio, 0.936; 95% confidence interval, 0.89 to 0.99; P = 0.016). Rates of pre-specified muscle, gallbladder, and hepatic adverse effects and cancer were similar in the two groups. CONCLUSIONS: When added to statin therapy, ezetimibe resulted in incremental lowering of LDL cholesterol levels and improved cardiovascular outcomes. Moreover, lowering LDL cholesterol to levels below previous targets provided additional benefit

    Evolocumab and clinical outcomes in patients with cardiovascular disease

    Full text link
    peer reviewedBACKGROUND Evolocumab is a monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9) and lowers low-density lipoprotein (LDL) cholesterol levels by approximately 60%. Whether it prevents cardiovascular events is uncertain. METHODS We conducted a randomized, double-blind, placebo-controlled trial involving 27,564 patients with atherosclerotic cardiovascular disease and LDL cholesterol levels of 70 mg per deciliter (1.8 mmol per liter) or higher who were receiving statin therapy. Patients were randomly assigned to receive evolocumab (either 140 mg every 2 weeks or 420 mg monthly) or matching placebo as subcutaneous injections. The primary efficacy end point was the composite of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization. The key secondary efficacy end point was the composite of cardiovascular death, myocardial infarction, or stroke. The median duration of follow-up was 2.2 years. RESULTS At 48 weeks, the least-squares mean percentage reduction in LDL cholesterol levels with evolocumab, as compared with placebo, was 59%, from a median baseline value of 92 mg per deciliter (2.4 mmol per liter) to 30 mg per deciliter (0.78 mmol per liter) (P<0.001). Relative to placebo, evolocumab treatment significantly reduced the risk of the primary end point (1344 patients [9.8%] vs. 1563 patients [11.3%]; hazard ratio, 0.85; 95% confidence interval [CI], 0.79 to 0.92; P<0.001) and the key secondary end point (816 [5.9%] vs. 1013 [7.4%]; hazard ratio, 0.80; 95% CI, 0.73 to 0.88; P<0.001). The results were consistent across key subgroups, including the subgroup of patients in the lowest quartile for baseline LDL cholesterol levels (median, 74 mg per deciliter [1.9 mmol per liter]). There was no significant difference between the study groups with regard to adverse events (including new-onset diabetes and neurocognitive events), with the exception of injection-site reactions, which were more common with evolocumab (2.1% vs. 1.6%). CONCLUSIONS In our trial, inhibition of PCSK9 with evolocumab on a background of statin therapy lowered LDL cholesterol levels to a median of 30 mg per deciliter (0.78 mmol per liter) and reduced the risk of cardiovascular events. These findings show that patients with atherosclerotic cardiovascular disease benefit from lowering of LDL cholesterol levels below current targets. © 2017 Massachusetts Medical Society

    Evolocumab and clinical outcomes in patients with cardiovascular disease

    No full text
    BACKGROUND Evolocumab is a monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9) and lowers low-density lipoprotein (LDL) cholesterol levels by approximately 60%. Whether it prevents cardiovascular events is uncertain. METHODS We conducted a randomized, double-blind, placebo-controlled trial involving 27,564 patients with atherosclerotic cardiovascular disease and LDL cholesterol levels of 70 mg per deciliter (1.8 mmol per liter) or higher who were receiving statin therapy. Patients were randomly assigned to receive evolocumab (either 140 mg every 2 weeks or 420 mg monthly) or matching placebo as subcutaneous injections. The primary efficacy end point was the composite of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization. The key secondary efficacy end point was the composite of cardiovascular death, myocardial infarction, or stroke. The median duration of follow-up was 2.2 years. RESULTS At 48 weeks, the least-squares mean percentage reduction in LDL cholesterol levels with evolocumab, as compared with placebo, was 59%, from a median baseline value of 92 mg per deciliter (2.4 mmol per liter) to 30 mg per deciliter (0.78 mmol per liter) (P<0.001). Relative to placebo, evolocumab treatment significantly reduced the risk of the primary end point (1344 patients [9.8%] vs. 1563 patients [11.3%]; hazard ratio, 0.85; 95% confidence interval [CI], 0.79 to 0.92; P<0.001) and the key secondary end point (816 [5.9%] vs. 1013 [7.4%]; hazard ratio, 0.80; 95% CI, 0.73 to 0.88; P<0.001). The results were consistent across key subgroups, including the subgroup of patients in the lowest quartile for baseline LDL cholesterol levels (median, 74 mg per deciliter [1.9 mmol per liter]). There was no significant difference between the study groups with regard to adverse events (including new-onset diabetes and neurocognitive events), with the exception of injection-site reactions, which were more common with evolocumab (2.1% vs. 1.6%). CONCLUSIONS In our trial, inhibition of PCSK9 with evolocumab on a background of statin therapy lowered LDL cholesterol levels to a median of 30 mg per deciliter (0.78 mmol per liter) and reduced the risk of cardiovascular events. These findings show that patients with atherosclerotic cardiovascular disease benefit from lowering of LDL cholesterol levels below current targets
    corecore