99 research outputs found

    The rule for a subdiffusive particle in an extremely diverse environment

    Full text link
    The dynamics of a subdiffusive continuous time random walker in an inhomogeneous environment is analyzed. In each microscopic jump, a random time is drawn from a waiting time probability density function (WT-PDF) that decays as a power law: phi(t;k)~k/(1+kt)^(1+beta), 0<beta<1. The parameter k, which is the diffusion coefficient for the jump, is a random quantity also; in each jump, it is drawn from a PDF, p(k)~1/k^gamma (0<gamma<1). We show that this system exhibits a transition in the scaling law of its effective WT-PDF, psi(t), which is obtained when averaging phi(t;k) with p(k). psi(t) decays as a power law, psi(t)~1/t^(1+mu), and mu is given by two different formula. When 1-gamma> beta;, mu=beta, but when 1-gamma<beta, mu=1-gamma. The transition in the scaling of psi(t) reflects the competition between two different mechanisms for subdiffusion: subdiffusion due to the heavily tailed phi(t;k) for microscopic jumps, and subdiffusion due to the collective effect of an environment made of many slow local regions. These two different mechanisms for subdiffusion are not additive, and compete each other. The reported transition is dimension independent, and disappears when the power beta is also distributed, in the range, 0<bate<1. Simulations exemplified the transition, and implications are discussed

    The Value of Comparative Animal Research : Krogh’s Principle Facilitates Scientific Discoveries

    Get PDF
    There are no conflicts of interest to declare. This paper developed from the 2016 Early Career Impact Award from the Federation of Associations in Behavioral & Brain Sciences to TJS. TJS has received funding from The Leverhulme Trust. FJPE is in receipt of funding from the BBSRC (BB/M001555/1). The National Institutes of Health has funded RDF (NS 034950, NS093277, NIMH 087930), AGO (HD079573, IOS-1354760) and AMK (HD081959). BAA is an Arnold O. Beckman postdoctoral fellow.Peer reviewedPostprin

    Plasticity in parental behavior and vasopressin: responses to co-parenting, pup age, and an acute stressor are experience-dependent

    Get PDF
    IntroductionThe impact of variation in parental caregiving has lasting implications for the development of offspring. However, the ways in which parents impact each other in the context of caregiving is comparatively less understood, but can account for much of the variation observed in the postnatal environment. Prairie voles (Microtus ochrogaster) demonstrate a range of postnatal social groups, including pups raised by biparental pairs and by their mothers alone. In addition to the challenges of providing parental care, prairie vole parents often experience acute natural stressors (e.g., predation, foraging demands, and thermoregulation) that could alter the way co-parents interact.MethodsWe investigated how variation in the experience of raising offspring impacts parental behavior and neurobiology by administering an acute handling stressor on prairie vole families of single mothers and biparental parents over the course of offspring postnatal development.ResultsMothers and fathers exhibited robust behavioral plasticity in response to the age of their pups, but in sex-dependent ways. Pup-directed care from mothers did not vary as a function of their partner’s presence, but did covary with the number of hypothalamic vasopressin neurons in experience-dependent ways. The relationship between vasopressin neuron numbers and fathers’ behaviors was also contingent upon the stress handling manipulation, suggesting that brain-behavior associations exhibit stress-induced plasticity.ConclusionThese results demonstrate that the behavioral and neuroendocrine profiles of adults are sensitive to distinct and interacting experiences as a parent, and extend our knowledge of the neural mechanisms that may facilitate parental behavioral plasticity

    When to Cheat: Modeling Dynamics of Paternity and Promiscuity in Socially Monogamous Prairie Voles (Microtus ochrogaster)

    Get PDF
    In many socially monogamous species, individuals form long-term pair bonds and males mate guard females. Such behavior is thought to help secure intra-pair fertilizations, the result of intra-pair copulations (IPCs), and ensure paternity. However, socially monogamous males are also often opportunistic and seek additional mating opportunities with other females, leaving their partner unguarded. The success associated with a male's decision to seek more mates over guarding his partner might be impacted by the activity of other males, specifically the proportion of other males leaving their territories to seek extra-pair copulations (EPCs). The amount of EPC-seeking males can impact the likelihood of a given male encountering an unguarded paired female, but also of being cuckolded (losing IPCs). It remains unclear under which conditions it is optimal to stay and guard or seek EPCs. Using field data from socially monogamous prairie voles (Microtus ochrogaster) to generate parameters, we used optimal performance modeling (Monte Carlo simulations) to ask when is it most reproductively advantageous for a bonded male to seek EPCs, despite the risk of losing IPCs. We defined three types of males: exclusive mating bonded males (true residents), non-exclusive mating bonded residents (roving residents), and unpaired males (wanderers). We first modeled the success of an individual male living in a context that incorporated only true and roving residents. We next added wandering males to this model. Finally, we considered the effects of including wandering males and unpaired females in our model. For all contexts, we found that as EPC-seeking in the population increases, the potential reproductive benefit for seeking EPCs increasingly outpaces the rate of cuckolding. In other words, we observe a shift in optimal strategy from true residents to rovers among paired males. Our models also demonstrate that reproductive fitness is likely to remain constant, despite the shift toward obtaining success via EPCs over IPCs. Our results show the dynamic nature of reproductive decision-making, and demonstrate that alternative reproductive decisions yield subtle but important differences despite appearing as balanced strategies

    Renewal-anomalous-heterogeneous files

    Full text link
    Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is exponential as in Brownian files, yet obeys: {\psi}_{\alpha} (t)~t^(-1-{\alpha}), 0<{\alpha}<1. The file is renewal as all the particles attempt to jump at the same time. It is shown that the mean square displacement (MSD) in a renewal-anomalous-heterogeneous file, , obeys, ~[_{nrml}]^{\alpha}, where _{nrml} is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.Comment: Accepted for publication (August, 2010

    Characterization of oxytocin and vasopressin receptors in the Southern giant pouched rat and comparison to other rodents

    Get PDF
    Vasopressin and oxytocin are well known and evolutionarily ancient modulators of social behavior. The distribution and relative densities of vasopressin and oxytocin receptors are known to modulate the sensitivity to these signaling molecules. Comparative work is needed to determine which neural networks have been conserved and modified over evolutionary time, and which social behaviors are commonly modulated by nonapeptide signaling. To this end, we used receptor autoradiography to determine the distribution of vasopressin 1a and oxytocin receptors in the Southern giant pouched rat (Cricetomys ansorgei) brain, and to assess the relative densities of these receptors in specific brain regions. We then compared the relative receptor pattern to 23 other species of rodents using a multivariate ANOVA. Pouched rat receptor patterns were strikingly similar to hamsters and voles overall, despite the variation in social organization among species. Uniquely, the pouched rat had dense vasopressin 1a receptor binding in the caudate-putamen (i.e., striatum), an area that might impact affiliative behavior in this species. In contrast, the pouched rat had relatively little oxytocin receptor binding in much of the anterior forebrain. Notably, however, oxytocin receptor binding demonstrated extremely dense binding in the bed nucleus of the stria terminalis, which is associated with the modulation of several social behaviors and a central hub of the social decision-making network. Examination of the nonapeptide system has the potential to reveal insights into species-specific behaviors and general themes in the modulation of social behavior

    Prominin‐1 controls stem cell activation by orchestrating ciliary dynamics

    Get PDF
    Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly–disassembly dynamics are under rigid cell cycle‐dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol‐binding membrane glycoprotein, Prominin‐1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases

    Mechanical Work as an Indirect Measure of Subjective Costs Influencing Human Movement

    Get PDF
    To descend a flight of stairs, would you rather walk or fall? Falling seems to have some obvious disadvantages such as the risk of pain or injury. But the preferred strategy of walking also entails a cost for the use of active muscles to perform negative work. The amount and distribution of work a person chooses to perform may, therefore, reflect a subjective valuation of the trade-offs between active muscle effort and other costs, such as pain. Here we use a simple jump landing experiment to quantify the work humans prefer to perform to dissipate the energy of landing. We found that healthy normal subjects (N = 8) preferred a strategy that involved performing 37% more negative work than minimally necessary (P<0.001) across a range of landing heights. This then required additional positive work to return to standing rest posture, highlighting the cost of this preference. Subjects were also able to modulate the amount of landing work, and its distribution between active and passive tissues. When instructed to land softly, they performed 76% more work than necessary (P<0.001), with a higher proportion from active muscles (89% vs. 84%, P<0.001). Stiff-legged landings, performed by one subject for demonstration, exhibited close to the minimum of work, with more of it performed passively through soft tissue deformations (at least 30% in stiff landings vs. 16% preferred). During jump landings, humans appear not to minimize muscle work, but instead choose to perform a consistent amount of extra work, presumably to avoid other subjective costs. The degree to which work is not minimized may indirectly quantify the relative valuation of costs that are otherwise difficult to measure

    The Major Surface-Associated Saccharides of Klebsiella pneumoniae Contribute to Host Cell Association

    Get PDF
    Analysing the pathogenic mechanisms of a bacterium requires an understanding of the composition of the bacterial cell surface. The bacterial surface provides the first barrier against innate immune mechanisms as well as mediating attachment to cells/surfaces to resist clearance. We utilised a series of Klebsiella pneumoniae mutants in which the two major polysaccharide layers, capsule and lipopolysaccharide (LPS), were absent or truncated, to investigate the ability of these layers to protect against innate immune mechanisms and to associate with eukaryotic cells. The capsule alone was found to be essential for resistance to complement mediated killing while both capsule and LPS were involved in cell-association, albeit through different mechanisms. The capsule impeded cell-association while the LPS saccharides increased cell-association in a non-specific manner. The electrohydrodynamic characteristics of the strains suggested the differing interaction of each bacterial strain with eukaryotic cells could be partly explained by the charge density displayed by the outermost polysaccharide layer. This highlights the importance of considering not only specific adhesin:ligand interactions commonly studied in adherence assays but also the initial non-specific interactions governed largely by the electrostatic interaction forces
    corecore