7 research outputs found

    Matériaux cristaux liquides magnétiques

    Get PDF
    Les Ă©lastomĂšres cristaux liquides (ECL) offrent la possibilitĂ© d'obtenir des actionneurs, des muscles artificiels et autres senseurs. En effet, ces matĂ©riaux combinent les propriĂ©tĂ©s Ă©lastiques des Ă©lastomĂšres aux propriĂ©tĂ©s d'organisation liĂ©es au cristal liquide et peuvent ainsi changer de forme sous l'effet de la tempĂ©rature. En ajoutant des nanoparticules magnĂ©tiques, la matrice ECL offre l'intĂ©rĂȘt de rĂ©pondre Ă  un champ magnĂ©tique. Dans cette thĂšse, le polymĂšre sĂ©lectionnĂ© est un polysiloxane. Il a une tempĂ©rature de transition vitreuse trĂšs basse et il est donc trĂšs flexible Ă  tempĂ©rature ambiante. De plus, il est facile Ă  rĂ©ticuler. Les nanoparticules choisies sont des nanobĂątonnets de cobalt, car leur forme anisotrope permet d'avoir une susceptibilitĂ© magnĂ©tique Ă©levĂ©e. Pour comprendre les mĂ©canismes qui sont en jeu, nous nous intĂ©ressons d'abord Ă  l'Ă©tude des systĂšmes non rĂ©ticulĂ©s, c'est-Ă -dire aux polymĂšres cristaux liquides dopĂ©s avec des nanoparticules magnĂ©tiques (PCLM), et nous les comparons aux polymĂšres cristaux liquides seuls (PCL). Sur ces polymĂšres une Ă©tude structurale poussĂ©e a Ă©tĂ© menĂ©e afin d'avoir une analyse des matĂ©riaux Ă  diffĂšrentes Ă©chelles. On constate qu'en presence d'une interaction de la matrice cristal liquide avec les nanobĂątonnets de cobalt, les mĂ©sogĂšnes du PCLM s'orientent mieux sous champ magnĂ©tique. Dans le cadre des Ă©tudes magnĂ©tiques, on observe que les PCLM prĂ©sentent des champs coercitifs plus Ă©levĂ©s que ceux prevus par la thĂ©orie. Ceci est dĂ» au fait que le PCLM est un milieu diluĂ© qui rĂ©duit les interactions dipolaires. Ensuite nous avons Ă©tudiĂ© les systĂšmes rĂ©ticulĂ©s, et pour ce faire, nous avons mis au point les conditions de synthĂšse. Les matĂ©riaux obtenus sont cristal liquides et ferromagnĂ©tiques. Nous souhaitions appliquer le champ magnĂ©tique sur le composite et observer sa dĂ©formation mĂ©canique. Cependant pour voir un changement de forme du matĂ©riau, il faut qu'il soit monodomaine. Ainsi nous avons rĂ©alisĂ© des synthĂšses du composite sous champ magnĂ©tique, Ă  tempĂ©rature ambiante, pour orienter les mĂ©sogĂšnes, ainsi que les nanobĂątonnets de cobalt, dans une mĂȘme direction. AprĂšs avoir observĂ© les Ă©chantillons, en diffraction des rayons X et en magnĂ©tomĂ©trie, il apparait que les nanabĂątonnets sont bien alignĂ©s. Par contre, pour orienter les mesogĂšnes, il apparait qu'il serait prĂ©fĂ©rable de se placer Ă  la tempĂ©rature isotrope en appliquant le champ magnĂ©tique. Cette Ă©tude a validĂ© la faisabilitĂ© de rĂ©aliser des rĂ©seaux Ă©lastomĂšres mĂ©somorphes magnĂ©tiques et a montrĂ© l'apport potentiel du dopage de la matrice cristal liquide par des nanobĂątonnets de cobalt.Liquid-Crystalline Elastomers (LCE) allow to obtain actuators and other sensors. These materials can change shape under temperature. In addition to magnetic nanoparticles, LCE offer the interest of responding to a magnetic field. In order to understand the mechanisms at stake, we start by the study of no cross-linkage systems that is to say by liquid-crystalline polymers doped with magnetic nanoparticles (PCLM). Then, we compare it at only liquid-crystalline polymers (PCL). The strutural study of these polymers shows that in presence of an interaction between the liquid-crystalline matrix and the cobalt nanorods, mesogens of PCLM show a better alignment under magnetic field. Then, we have studied the cross-linkage systems. The Materials obtained are liquid-crystal and ferromagnetic. To see a shape modification of the material it must be monodomain. Thus, we have realized syntheses of composite under magnetic field at room temperature, to aligne the mesogens and the cobalt nanorods in the same direction. The observation of these samples enables to see that the cobalt nanorods are well aligned. However, to aligne the mesogens it appears that it would be better to use an isotropic temperature and to apply the magnetic field. This study has approved the feasibility to realize magnetic mesomorphous elastomers and has shown the contribution of doping of the liquid-crystalline matrix by cobalt nanorods

    In Situ and Ex Situ Syntheses of Magnetic Liquid Crystalline Materials: A Comparison

    Get PDF
    International audienceMagnetic hybrid liquid crystalline composites have been obtained either by thermal decomposition of a cobalt precursor in a solution containing a liquid crystal polymer or by dispersing preformed cobalt nanorods in a liquid crystal polymer matrix. The final materials are all mesomorphous and ferromagnetic. Their magnetic characteristics are compared as a function of the synthesis method

    Room-Temperature, Strain-Tunable Orientation of Magnetization in a Hybrid Ferromagnetic Co Nanorod-Liquid Crystalline Elastomer Nanocomposite

    No full text
    International audienceHybrid nanocomposites based on magnetic nanoparticles dispersed in liquid crystalline elastomers are fascinating emerging materials. Their expected strong magneto‐elastic coupling may open new applications as actuators, magnetic switches, and for reversible storage of magnetic information. We report here the synthesis of a novel hybrid ferromagnetic liquid crystalline elastomer. In this material, highly anisotropic Co nanorods are aligned through a cross‐linking process performed in the presence of an external magnetic field. We obtain a highly anisotropic magnetic material which exhibits remarkable magneto‐elastic coupling. The nanorod alignment can be switched at will at room temperature by weak mechanical stress, leading to a change of more than 50 % of the remnant magnetization ratio and of the coercive field

    Room-Temperature, Strain-Tunable Orientation of Magnetization in a Hybrid Ferromagnetic Co Nanorod-Liquid Crystalline Elastomer Nanocomposite

    No full text
    International audienceHybrid nanocomposites based on magnetic nanoparticles dispersed in liquid crystalline elastomers are fascinating emerging materials. Their expected strong magneto‐elastic coupling may open new applications as actuators, magnetic switches, and for reversible storage of magnetic information. We report here the synthesis of a novel hybrid ferromagnetic liquid crystalline elastomer. In this material, highly anisotropic Co nanorods are aligned through a cross‐linking process performed in the presence of an external magnetic field. We obtain a highly anisotropic magnetic material which exhibits remarkable magneto‐elastic coupling. The nanorod alignment can be switched at will at room temperature by weak mechanical stress, leading to a change of more than 50 % of the remnant magnetization ratio and of the coercive field

    Liquid Crystalline Polymer–Co Nanorod Hybrids: Structural Analysis and Response to a Magnetic Field

    No full text
    International audienceThis work deals with the structural analysis of side-chain liquid crystalline polysiloxanes, doped with magnetic cobalt nanorods, and their orientational properties under a magnetic field. These new materials exhibit the original combination of orientational behavior and ferromagnetic properties at room temperature. Here we show that, within the liquid crystal polymer matrix, the cobalt nanorods self-assemble in bundles made of nanorod rows packed in a 2-dimensional hexagonal lattice. This structure accounts for the magnetic properties of the composites. The magnetic and orientational properties are discussed with respect to the nature of the polymer matrix

    Liquid Crystalline Polymer–Co Nanorod Hybrids: Structural Analysis and Response to a Magnetic Field

    No full text
    International audienceThis work deals with the structural analysis of side-chain liquid crystalline polysiloxanes, doped with magnetic cobalt nanorods, and their orientational properties under a magnetic field. These new materials exhibit the original combination of orientational behavior and ferromagnetic properties at room temperature. Here we show that, within the liquid crystal polymer matrix, the cobalt nanorods self-assemble in bundles made of nanorod rows packed in a 2-dimensional hexagonal lattice. This structure accounts for the magnetic properties of the composites. The magnetic and orientational properties are discussed with respect to the nature of the polymer matrix
    corecore