4 research outputs found

    Exploring demoralization in end-of-life cancer patients: Prevalence, latent dimensions, and associations with other psychosocial variables

    No full text
    Originally Published at 10.1017/s1478951519000191. Deposited by shareyourpaper.org and openaccessbutton.org. We've taken reasonable steps to ensure this content doesn't violate copyright. However, if you think it does you can request a takedown by emailing [email protected]

    Virus removal by iron oxide ceramic membranes

    Get PDF
    Nanoporous iron oxide ceramics were studied for the removal of virus contamination from water. Supported and unsupported iron oxide nanostructured hematite was fabricated by a green chemistry route from ferroxane nanoparticles. The material had a surface area of approximately 30 m2/g and a mean pore size of 65 nm. Bacteriophage P22 was chosen as a model for human virus. The kinetics and equilibrium of the attachment process was investigated. P22 adsorption isotherms on iron oxide were described by the Freundlich equation. Batch experiments resulted in 1.5 LRVs. Removal proceeded rapidly for the first 7 h; next, a diffusion-limited stage occurred. Dynamic attachment experiments demanded extensive recirculation to achieve significant reduction levels. Up to 3 LRV were observed. The enhanced performance can be explained by the higher iron oxide area available and the facilitated access to inner porosity sites that were previously unavailable due to slow diffusion. The role of electrostatic interactions in the attachment mechanisms was confirmed by the dependence of the isotherm on the ionic strength of the suspension medium. P22 bacteriophage is expected to attach to the iron oxide by electrostatic forces up to a pH of 6.5. DLVO theory predicts moderately well the interaction energies between P22 particles themselves and between the phage and the ceramic. However, a slight underestimation of the P22–P22 repulsive forces was evident by comparison to the experimental data.Fil: Fidalgo, María Marta. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gallardo, Maria V.. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; ArgentinaFil: Yrazu, Fernando. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; ArgentinaFil: Gentile, Guillermina. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; ArgentinaFil: Opezzo, Oscar. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; ArgentinaFil: Pizarro, Ramón Augusto. Instituto Tecnologico de Buenos Aires. Departamento de Ingenieria Quimica; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; ArgentinaFil: Poma, Hugo Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); ArgentinaFil: Rajal, Verónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigación para la Industria Química (i); Argentin
    corecore