266 research outputs found

    The Impact of GSM towers in Radio Astronomy

    Full text link
    Radio astronomy is a specialised area of astronomy that examines the radio emissions from astronomical bodies within the electromagnetic spectrum's radio range. As radio telescopes have become increasingly sensitive due to technological advancements, radio astronomers face the significant challenge of reducing the impact of human-generated radio interference. Our research delved into the impact of Global System for Mobile Communication (GSM) signals on radio astronomy data, utilising a multidimensional framework approach with a probabilistic basis. We discovered a link between the location of cell towers in the nearby towns surrounding MeerKAT and a high probability of Radio Frequency Interference (RFI). However, we found no statistically significant association between the time of day and RFI occurrence at the 68% confidence level.Comment: 2023 IEEE Radio and Antenna Days of the Indian Ocean (RADIO

    Early Science with the Karoo Array Telescope: a Mini-Halo Candidate in Galaxy Cluster Abell 3667

    Full text link
    Abell 3667 is among the most well-studied galaxy clusters in the Southern Hemisphere. It is known to host two giant radio relics and a head-tail radio galaxy as the brightest cluster galaxy. Recent work has suggested the additional presence of a bridge of diffuse synchrotron emission connecting the North-Western radio relic with the cluster centre. In this work, we present full-polarization observations of Abell 3667 conducted with the Karoo Array Telescope at 1.33 and 1.82 GHz. Our results show both radio relics as well as the brightest cluster galaxy. We use ancillary higher-resolution data to subtract the emission from this galaxy, revealing a localised excess, which we tentatively identify as a radio mini-halo. This mini-halo candidate has an integrated flux density of 67.2±4.967.2\pm4.9 mJy beam−1^{-1} at 1.37 GHz, corresponding to a radio power of P1.4 GHz=4.28±0.31×1023_{\rm{1.4\,GHz}}=4.28\pm0.31\times10^{23} W Hz−1^{-1}, consistent with established trends in mini-halo power scaling.Comment: 17 pages, 10 figures, accepted MNRA

    A KAT-7 view of a low-mass sample of galaxy clusters

    Full text link
    Radio observations over the last two decades have provided evidence that diffuse synchrotron emission in the form of megaparsec-scale radio halos in galaxy clusters is likely tracing regions of the intracluster medium where relativistic particles are accelerated during cluster mergers. In this paper we present results of a survey of 14 galaxy clusters carried out with the 7-element Karoo Array Telescope at 1.86 GHz, aimed to extend the current studies of radio halo occurrence to systems with lower masses (M500>4×1014_{\rm 500} > 4\times10^{14} M⊙{_\odot}). We found upper limits at the 0.6−1.9×10240.6 - 1.9 \times 10^{24} Watt Hz−1^{-1} level for ∼50%\sim 50\% of the sample, confirming that bright radio halos in less massive galaxy clusters are statistically rare.Comment: 7 pages, 4 figures. Conference proceeding of "The many facets of extragalactic radio surveys: towards new scientific challenges", 20-23 October 2105, Bologna, Ital

    Interaction of urban heating and local winds during the calm intermonsoon seasons in the tropics.

    Get PDF
    Rapid urbanization of cities has greatly modified the thermal and dynamic profile in the urban boundary layer. This paper attempts to study the interaction of urban heating and the local topographic-induced flow circulation for a tropical coastal city, Greater Kuala Lumpur, in Malaysia. The role of sea-and-valley-breeze-orientated synoptic flow (SBOS) on the interaction is determined by comparing two intermonsoon periods. A state-of-the-art numerical model, Advanced Research Weather Research and Forecasting model, is used to identify the influence of urbanization through modification of urban surfaces. The model reasonably reproduces the vertical sounding data and near-surface weather parameters. The diurnal urban heating pattern is attributed to three predominant factors: (i) weak under calm and clear-sky condition (morning heating), (ii) weak under larger atmospheric moisture content (late afternoon convection), and (iii) largest (1.4°C) due to differential cooling rate of urban and rural surface at night. The interaction of urban thermals and upper level SBOS affects the effect of urbanization on local circulation during the day. The urban thermals reduce the weak opposing SBOS (2 m s−1) suppresses the vertical lifting of urban thermals and decelerates the sea breeze front. It is discovered that the interaction of urban heating and topographic-induced flow is interdependent while the synoptic flow plays a critical role in modifying both factors, respectively
    • …
    corecore