70 research outputs found

    Simulation of Emergency Vehicles in Connected and Autonomous Traffic

    Get PDF

    Simulation of Emergency Vehicles in Connected and Autonomous Traffic

    Get PDF

    Clinical governance in primary care. Second edition

    Get PDF

    Exogenous application of platelet-leukocyte gel during open subacromial decompression contributes to improved patient outcome

    Get PDF
    Background: Platelet-leukocyte gel (PLG) is being used during various surgical procedures in an attempt to enhance the healing process. We studied the effects of PLG on postoperative recovery of patients undergoing open subacromial decompression (OSD). Methods: PLG was produced from platelet-leukocyte-rich plasma (P-LRP), prepared from a unit of whole blood. Forty patients were included in the study. Self-assessed evaluations, using the American Shoulder and Elbow Surgeons scoring system of activities of daily living (ADL), joint instability, pain levels, pain medications, and clinical evaluations for range of motion were conducted. Results: Platelet and leukocyte counts were significantly increased in the P-LRP compared to baseline counts. Treated patients demonstrated decreased visual analog scales for pain and used significantly less pain medication, had an improved range of motion during passive forward elevation, external rotation, external rotation with arm at 90 degrees abduction, internal rotation, and cross body adduction compared to control patients (p < 0.001). No differences in the instability score were observed between the groups. Furthermore, treated patients performed more ADL (p < 0.05). Conclusion: In the PLG-treated group, recovery was faster and patients returned earlier to daily activities and also took less pain medication than control subjects

    Post-field ionization of Si clusters in atom probe tomography: A joint theoretical and experimental study

    Full text link
    A major challenge for Atom Probe Tomography (APT) quantification is the inability to decouple ions which possess the same mass/charge-state (m/nm/n) ratio but a different mass. For example, 75As+^{75}{\rm{As}}^{+} and 75As22+^{75}{\rm{As}}{_2}^{2+} at ~75 Da or 14N+^{14}{\rm{N}}^+ and 28Si2+^{28}{\rm{Si}}^{2+} at ~14 Da, cannot be differentiated without the additional knowledge of their kinetic energy or a significant improvement of the mass resolving power. Such mass peak overlaps lead to ambiguities in peak assignment, resulting in compositional uncertainty and an incorrect labelling of the atoms in a reconstructed volume. In the absence of a practical technology for measuring the kinetic energy of the field-evaporated ions, we propose and then explore the applicability of a post-experimental analytical approach to resolve this problem based on the fundamental process that governs the production of multiply charged molecular ions/clusters in APT, i.e., Post-Field Ionization (PFI). The ability to predict the PFI behaviour of molecular ions as a function of operating conditions could offer the first step towards resolving peak overlap and minimizing compositional uncertainty. We explore this possibility by comparing the field dependence of the charge-state-ratio for Si clusters (Si2\rm{Si}_2, Si3\rm{Si}_3 and Si4\rm{Si}_4) with theoretical predictions using the widely accepted Kingham PFI theory. We then discuss the model parameters that may affect the quality of the fit and the possible ways in which the PFI of molecular ions in APT can be better understood. Finally, we test the transferability of the proposed approach to different material systems and outline ways forward for achieving more reliable results

    Evidence in peroneal nerve entrapment: A scoping review

    Full text link
    peer reviewedBackground and purpose: Daily management of patients with foot drop due to peroneal nerve entrapment varies between a purely conservative treatment and early surgery, with no high-quality evidence to guide current practice. Electrodiagnostic (EDX) prognostic features and the value of imaging in establishing and supplementing the diagnosis have not been clearly established. Methods: We performed a literature search in the online databases MEDLINE, Embase, and the Cochrane Library. Of the 42 unique articles meeting the eligibility criteria, 10 discussed diagnostic performance of imaging, 11 reported EDX limits for abnormal values and/or the value of EDX in prognostication, and 26 focused on treatment outcome. Results: Studies report high sensitivity and specificity of both ultrasound (varying respectively from 47.1% to 91% and from 53% to 100%) and magnetic resonance imaging (MRI; varying respectively from 31% to 100% and from 73% to 100%). One comparative trial favoured ultrasound over MRI. Variable criteria for a conduction block (>20%–≥50) were reported. A motor conduction block and any baseline compound motor action potential response were identified as predictors of good outcome. Based predominantly on case series, the percentage of patients with good outcome ranged 0%–100% after conservative treatment and 40%−100% after neurolysis. No study compared both treatments. Conclusions: Ultrasound and MRI have good accuracy, and introducing imaging in the standard diagnostic workup should be considered. Further research should focus on the role of EDX in prognostication. No recommendation on the optimal treatment strategy of peroneal nerve entrapment can be made, warranting future randomized controlled trials. © 2021 European Academy of Neurolog
    • …
    corecore