75 research outputs found

    Use of supplementary lighting top screens and effects on greenhouse climate and return on investment

    Get PDF
    Discomfort caused by light pollution from greenhouses that apply supplementary lighting is an issue in Dutch society nowadays. At this moment Dutch legislation requires an opaque screen that reduces light transmission of the greenhouse wall by 95%. In 2008 also the light transmission of the greenhouse roof must be reduced equally and supplementary light will be limited to 15,000lx(180¿mol/m2/s), unless light emission is totally prevented. The objective of this research was to calculate the economic consequences of installing reflecting, light emission reducing or blocking screens by considering crop yield and costs. A mathematical correction equation was developed to approach the light gain for the crop as a result of internal reflection. Greenhouse climate and tomato crop growth were simulated for a reference greenhouse with supplementary lighting and without an emission blocking screen and for a low-light-emission greenhouse with a blocking screen. The supplementary lighting level was set at 180¿mol/m2/s. Results show that the greenhouse climate below the screen remained manageable, but that the desired DIF of 2°C was affected. The light gain was on average about 3% and resulted in production increase. A small net yearly profit resulted based on direct and indirect effects of the screen. In conclusion, the simulation suggested that stopping light emission at the source with help of reflective opaque screens is economically feasible if screen operation is included in planning the lighting scheme

    Technical solutions to prevent heat stress induced crop growth reduction for three climatic regions in Mexico

    Get PDF
    In the last 15 years a significant increase in greenhouse area has occurred in Mexico, from a modest 50 hectares in 1990 to over 2,000 hectares in 2004. The rapid increase in greenhouse area is a result of an attractive export market, USA. Mexican summer midday temperatures are well above crop optimum and cooling is needed if heat stress induced crop growth reduction is to be prevented. The objective of this study was to determine the effectiveness and feasibility of greenhouse cooling systems for tomato culture under desert, humid tropic and temperate Mexican weather conditions. These climate regions are represented by Mexicali, Merida and Huejutla respectively. The cooling systems included a variety of passive and active systems, which through an engineering design methodology were combined to suit the climate conditions of the 3 regions. The evaluation was conducted via simulation, taking into account the most important temperature effects on crop growth and yield. The results showed that the cooling systems were effective in decreasing heat stress to plants. Investment costs of greenhouse with cooling equipment were under USD 50 m-2 and operational costs were under USD 10 m-2 for all equipment combinations and treatments except for the humid tropic climate of Merida. Solutions for Merida were both economically and physically not feasible due to too high humidity levels. This model study clearly indicates that cooling is feasible in desert and moderate climate regions of Mexico but in humid tropic climate regions feasibility is a problem. Application of design methodology and design evaluation with help of simulation greatly contributed to pointing out effective and non-effective solutions to reduce heat stress in hot climates

    Heat buffers improve capacity and exploitation degree of geothermal energy sources

    Get PDF
    This research focuses on the role of heat buffers to support optimal use of combinations of traditional and renewable heat sources like geothermal heat for greenhouse heating. The objective was to determine the contribution of heat buffers to effective new combinations of resources that satisfy greenhouse heat, carbon dioxide and electricity demand at minimum cost. Tank buffers, basement buffers and aquifers were considered as short and long term buffers. Simulations were carried out for a 10ha sweet pepper and a 30ha tomato greenhouse (15ha intensively lighted). Standard heating systems based on central boiler and co-generation were used as a reference and compared with combinations of boilers, co-generators, geothermal heat and heat buffer strategies. Crop production and greenhouse climate were simulated and resource demand determined for normal greenhouse operation. A linear programming algorithm was used to apply resources and equipment available to the model at minimum cost. Results show that heat buffers help to reduce the required capacity of a geothermal heat source, and increase both the utilisation degree of the source and the cover percentage of greenhouse heat demand. The technically most feasible solution for long term buffering was the basement buffer which allows high buffer volumes without loss of useful space and heat loss contributes to greenhouse heating, however this solution was economically not feasible. Also the deep aquifer was a good option, however exploitation risks and manageability are potential problems. Integration of geothermal heat with other sources resulted in the best solutions that were both technically and economically feasible. Simulation showed at gas price level 30¿ct.m-3, that geothermal heat was cheaper than central boiler and even co-generation heat when hours of operation exceed 1000h.y-1. Instead of using large buffers, peak loads can also be covered by central boilers. Simulated solutions reduced gas consumption with 60 to 95%

    Development of concepts for a zero-fossil-energy greenhouse

    Get PDF
    Dutch government and greenhouse horticultural practice aim for strongly reduced fossil energy use and of environmental loads in 2010 and energy neutral greenhouses in 2020. This research aims to design a greenhouse concept with minimal use of fossil energy and independent of nearby greenhouses. The concept is called the zero-fossil-energy-greenhouse. This paper presents a theoretical design study and analysis to assess the viability of a zero-fossil-energy-greenhouse concept. The greenhouse was designed for Dutch circumstances and relies on available state-of-art technologies. Nine concepts were generated and evaluated by a panel of experts. Although, none of the concepts was unanimously selected, one of the concepts received on-average highest votes. It uses an aquifer for long term heat and cold storage. Geothermal heat and a heat pump connected to the warm pit of the aquifer are used to heat of the greenhouse. Electricity need is covered by green-electricity. Cooling and dehumidification of the greenhouse is realised by a heat pump combined with the cold aquifer pit. This concept was more thoroughly evaluated in a simulation study that assessed design consistency and evaluated greenhouse performance in view of design requirements. From the simulations it was concluded that a combination of geothermal heat and a heat pump/aquifer can cover the heat demand of the greenhouse with help of heat buffers, but a fully closed greenhouse concept is not manageable in the summer season. With given technology the chosen concept was not able to cool and dehumidify greenhouse air to target temperature and humidity. A semi closed greenhouse solves this problem

    A model based method for evaluation of crop operation scenarios in greenhouses

    Get PDF
    Abstract This research initiated a model-based method to analyse labour in crop production systems and to quantify effects of system changes in order to contribute to effective greenhouse crop cultivation systems with efficient use of human labour and technology. This method was gradually given shape in the discrete event simulation model GWorkS, acronym for Greenhouse Work Simulation. Model based evaluation of labour in crop operations is relatively new in greenhouse horticulture and could allow for quantitative evaluation of existing greenhouse crop production systems, analysis of improvements, and identification of bottlenecks in crop operations. The modelling objective was a flexible and generic approach to quantify effects of production system changes. Cut-rose was selected as a case-study representative for many cut-flowers and fruit vegetables. The first focus was a queueing network model of the actions of a worker harvesting roses in a mobile cultivation system. Data and observations from a state-of-art mobile rose production system were used to validate and test the harvesting model. Model experiments addressed target values of operational parameters for best system performance. The model exposed effects of internal parameters not visible in acquired data. This was illustrated for operator and gutter speed as a function of crop yield. The structure and setup of the GWorkS model was generic where possible and system specific where inevitable. The generic concept was tested by transferring GWorkS to harvesting a greenhouse section in a static growing system for cut-roses and extending it with navigation in the greenhouse, product handling, and multiple operator activity (up to 3 workers). Also for rose harvesting in a static growing system, the model reproduced harvesting accurately. A seven workday validation for an average skilled harvester showed a relative root mean squared error (RRMSE) under 5% for both labour time and harvest rate. A validation for 96 days with various harvesters showed a higher RRMSE, 15.2% and 13.6% for labour time and harvest rate respectively. This increase was mainly caused by the absence of model parameters for individual harvesters. Work scenarios were simulated to examine effects of skill, equipment, and harvest management. For rose yields of 0.5 and 3 harvested roses per m2, harvest rate was 346 and 615 stems h-1 for average skilled harvesters, 207 and 339 stems h-1 for new harvesters and 407 and 767 stems h-1 for highly skilled harvesters. Economic effects of trolley choice are small, 0-2 € per 1000 stems and two harvest cycles per day was only feasible if yield quality effects compensate for extra costs of 0.2-1.1 eurocents per stem. In a sensitivity analysis and uncertainty analysis, parameters with strong influence on labour performance in harvesting roses in a static system were identified as well as effects of parameter uncertainty on key performance indicators. Differential sensitivity was analysed, and results were tested for linearity and superposability and verified using the robust Monte Carlo method. The model was not extremely sensitive for any of the 22 tested input parameters. Individual sensitivities changed with crop yield. Labour performance was most affected by greenhouse section dimensions, single rose cut time, and yield. Throughput was most affected by cut time of a single rose, yield, number of harvest cycles, greenhouse length and operator transport velocity. In uncertainty analysis the coefficient of variation for the most important outputs labour time and throughput is around 5%. The main sources of model uncertainty were in parallel execution of actions and trolley speed. The uncertainty effect of these parameters in labour time, throughput and utilisation of the operator is acceptably small with CV less than 5%. The combination of differential sensitivity analysis and Monte Carlo analysis gave full insight in both individual and total sensitivity of key performance indicators. To realise the objective of model based improvement of the operation of horticultural production systems in resources constrained system, the GWorkS-model was extended for simultaneous crop operations by multiple workers analysis. This objective was narrowed down to ranking eight scenarios with worker skill as a central theme including a labour management scenario applied in practise. The crop operations harvest, disbudding and bending were considered, which represent over 90% of crop-bound labour time. New sub-models on disbudding and bending were verified using measured data. The integrated scenario study on harvest, disbudding and bending showed differences between scenarios of up to 5 s per harvested rose in simulated labour time and up to 7.1 € m-2 per year in labour costs. The simulated practice of the grower and the scenario with minimum costs indicated possible savings of 4 € m-2 per year, which equals 15% of labour cost for harvest, disbudding and bending. Multi-factorial assessment of scenarios pointed out that working with low skilled, low paid workers is not effective. Specialised workers were most time effective with -17.5% compared to the reference, but overall a permanent team of skilled generalists ranked best. Reduced diversity in crop operations per day improved labour organisational outputs but ranked almost indifferent. The reference scenario was outranked by 5 scenarios. Discrete event simulation, as applied in the GWorkS-model, described greenhouse crop operations mechanistically correct and predicts labour use accurately. This model-based method was developed and validated by means of data sets originating from commercial growers. The model provided clear answers to research questions related to operations management and labour organisation using the full complexity of crop operations and a multi-factorial criterion. To the best of our knowledge, the GWorkS-model is the first model that is able to simulate multiple crop operations with constraints on available staff and resources. The model potentially supports analysis and evaluation of design concepts for system innovation.</p

    Local optimization of thermal storage for greenhouses: reduction of energy input and improvement of inner climate

    Get PDF
    In temperate regions, such as the Mediterranean basin, there is a diurnal excess of energy nearly every day of the year, which is usually dissipated through natural ventilation. However, since suboptimal nighttime temperatures limit productivity of unheated greenhouses for several months a year, extracting the daytime excess energy and reusing it to heat the greenhouse during the night would increase productivity, or at least reduce energy consumption of greenhouses that are heated. This heat extraction would have the additional advantage of reducing ventilation requirement thereby increasing the scope for carbon dioxide fertilization. To achieve this, the performance of the greenhouse as a solar collector has to be maximized by an efficient heat exchanging and heat buffering system. The aim of this research was to define the optimum combination of heat exchange rate, maximum water flow rate of a heat storage buffer and buffer capacity in a commercial green¬house in the Mediterranean region (Sicily, Italy, 37 °N), the cost function being represented by the dose (duration × intensity) of low temperature events. The green¬house temperature was calculated through a previously validated greenhouse climate simulation model, applied to one-year of real local data. The effect of the buffer on the cost function was first calculated for a range of heat exchange values followed by a cost function evaluation for nodes of a pre-selected grid, each node representing a value-pair for the other two buffer defining parameters. In this paper we analyze the trend of the cost function with respect to each parameter of the buffer and how this is affected by the preset tolerance of low temperatures. Furthermore, we discuss a simple method to find an “optimal” configuration of the buffer. Finally, a combination of 3000 m3 ha-1 buffer capacity, 45 m3 h-1 ha-1 maximum water flow rate and an overall heat transfer coefficient of 5 W m-2 K-1 is selected (heat transfer coefficient is defined per m2 greenhouse floor area)

    Klimaatsnormen voor mestvarkens

    Get PDF
    De klimaatsnormen voor varkens zijn herzien. Belangrijke conclusies vande werkgroep: bij opleg is de benodigde minimumtemperatuur veel hogerdan men denkt

    The Adaptive Greenhouse an Integrated Systems Approach to Developing Protected Cultivation Systems

    Get PDF
    Protected cultivation systems are used throughout the world as a powerful instrument to produce crops. They protect the crops from unfavorable outdoor climate conditions and pests and offer the opportunity to modify the indoor climate to create an environment that is optimal for crop growth and production, both in terms of quality and quantity. A quick scan of protected cultivation systems presently in use reveals that various types of protected cultivation systems have evolved in time. These cultivation systems differ for instance in terms of construction and cover materials used, the presence and use of different types of climate conditioning equipment, soil or soilless cultivation and nutrition. These differences are determined by the local climate, the availability of water, soil and water quality, the availability of capital, labor and materials and local legislation, to mention a few. With these observations in mind, this paper addresses the question of how to design a protected cultivation system that best satisfies the local conditions in the region considered. This is a multi-factorial design and optimization problem. This research aims at developing a generic design tool, using available knowledge for instance contained in heuristic and mathematical models. In this paper, the outlines of a systematic design procedure to design protected cultivation systems are sketched. The design of a minimum fossil energy greenhouse is used as example to illustrate the approac

    Verschildrukmeting.

    No full text

    Natuurlijke ventilatie in landbouwbedrijfsgebouwen; een modelmatige benadering. (2).

    No full text
    Als voorbeeld is voor een rundveestal de ventilatieprestatie doorgerekend bij 3 vormen van bovenbou
    corecore