1,370 research outputs found

    Self-reported illness among Boston-area international travelers: A prospective study

    Full text link
    This is the Accepted Manuscript version and was published in final edited form as: Travel Med Infect Dis. 2016 ; 14(6): 604–613. doi:10.1016/j.tmaid.2016.09.009.BACKGROUND: The Boston Area Travel Medicine Network surveyed travelers on travel-related health problems. METHODS: Travelers were recruited 2009-2011 during pre-travel consultation at three clinics. The investigation included pre-travel data, weekly during-travel diaries, and a post-travel questionnaire. We analyzed demographics, trip characteristics, health problems experienced, and assessed the relationship between influenza vaccination, influenza prevention advice, and respiratory symptoms. RESULTS:Of 987 enrolled travelers, 628 (64%) completed all surveys, of which 400 (64%) reported health problems during and/or after travel; median trip duration was 12 days. Diarrhea affected the most people during travel (172) while runny/stuffy nose affected the most people after travel (95). Of those with health problems during travel, 25% stopped or altered plans; 1% were hospitalized. After travel, 21% stopped planned activities, 23% sought physician or other health advice; one traveler was hospitalized. Travelers who received influenza vaccination and influenza prevention advice had lower rates of respiratory symptoms than those that received influenza prevention advice alone (18% vs 28%, P = 0.03). CONCLUSIONS:A large proportion of Boston-area travelers reported health problems despite pre-travel consultation, resulting in inconveniences. The combination of influenza prevention advice and influenza immunization was associated with fewer respiratory symptoms than those who received influenza prevention advice alone

    Vortex Matter Transition in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} under Tilted Fields

    Full text link
    Vortex phase diagram under tilted fields from the cc axis in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} is studied by local magnetization hysteresis measurements using Hall probes. When the field is applied at large angles from the cc axis, an anomaly (HpH_p^\ast) other than the well-known peak effect (HpH_p) are found at fields below HpH_p. The angular dependence of the field HpH_p^\ast is nonmonotonic and clearly different from that of HpH_p and depends on the oxygen content of the crystal. The results suggest existence of a vortex matter transition under tilted fields. Possible mechanisms of the transition are discussed.Comment: Revtex, 4 pages, some corrections are adde

    Investigating The Vortex Melting Phenomenon In BSCCO Crystals Using Magneto-Optical Imaging Technique

    Full text link
    Using a novel differential magneto-optical imaging technique we investigate the phenomenon of vortex lattice melting in crystals of Bi_2Sr_2CaCu_2O_8 (BSCCO). The images of melting reveal complex patterns in the formation and evolution of the vortex solid-liquid interface with varying field (H) or temperature (T). We believe that the complex melting patterns are due to a random distribution of material disorder or inhomogeneities across the sample, which create fluctuations in the local melting temperature or field value. To study the fluctuations in the local melting temperature / field, we have constructed maps of the melting landscape T_m(H,r), viz., the melting temperature (T_m) at a given location (r) in the sample at a given field (H). A study of these melting landscapes reveals an unexpected feature: the melting landscape is not fixed, but changes rather dramatically with varying field and temperature along the melting line. It is concluded that the changes in both the scale and shape of the landscape result from the competing contributions of different types of quenched disorder which have opposite effects on the local melting transition.Comment: Paper presented at the International Symposium on Advances in Superconductivity & Magnetism: Materials, Mechanisms & Devices September 25-28, 2001, Mangalore, India. Symposium proceedings will be published in a special issue of Pramana - Journal of Physic

    Characterisation of cohesive powders for bulk handling and DEM modelling

    Get PDF
    The flow behaviour of granular materials is relevant for many industrial applications including the pharmaceutical, chemical, consumer goods and food industries. A key issue is the accurate characterisation of these powders under different loading conditions and flow regimes, for example in mixers, pneumatic conveyors and silo filling and discharge. This paper explores the experimental aspects of cohesive powder handling at different compaction levels and flow regimes, namely inertial and quasi-static regimes. So far, laboratory element test set-ups capable of defining the full stress states at very low compaction levels have not been fully explored in literature. In contrast the mechanical behaviour of cohesive powders under relatively high consolidation stress (several kPa upward) can be carefully measured using element tests such as biaxial test, true triaxial and hollow cylinder tests. However in practice these tests are expensive and slow to conduct and are almost never performed for many industrial applications requiring material characterisation. Here we investigate simpler techniques that could be used for filling this important gap with the focus of providing test data for model calibration and simulation validation in line with the spirit of the European Commission funded PARDEM Marie Curie ITN Project. We perform particle and bulk characterisation on limestone powder with 4.7µm and 31.3 µm mean particle size, detergent powder with differences in formulation, cocoa powder with low and high fat content - relevant for different industrial applications. Of particular significance is the 4.7µm limestone powder which is the PARDEM reference powder that have been created and extensively used in a collaborative European PARDEM Project (www.pardem.eu). In the inertial, low consolidation stress regimes - more relevant for powder transport and conveying applications - we present experimental findings on the flowability and avalanching behaviour of the reference material in a rotating drum. On the other hand, in the quasi-static, higher consolidation regime, we perform shear tests with the Edinburgh Powder Tester (EPT), an extended uniaxial tester and the commercially available Freeman FT4 Powder Rheometer. For macroscopic quantities, we report the unconfined yield strength as a function of applied stress. These material characteristics provide important scientific insights for developing innovative solutions for cohesive powder handling problems. From these experiments and for best practice guideline, we highlight subtle issues associated with the experimental setup and measurements. The experiments lead to a rich quantitative description of the flow behaviour and failure properties of the materials which provide the material data for DEM model calibration and validation

    The London theory of the crossing-vortex lattice in highly anisotropic layered superconductors

    Full text link
    A novel description of Josephson vortices (JVs) crossed by the pancake vortices (PVs) is proposed on the basis of the anisotropic London theory. The field distribution of a JV and its energy have been calculated for both dense (aλJa\lambda_J) PV lattices with distance aa between PVs, and the nonlinear JV core size λJ\lambda_J. It is shown that the ``shifted'' PV lattice (PVs displaced mainly along JVs in the crossing vortex lattice structure), formed in high out-of-plane magnetic fields transforms into the PV lattice ``trapped'' by the JV sublattice at a certain field, lower than Φ0/γ2s2\Phi_0/\gamma^2s^2, where Φ0\Phi_0 is the flux quantum, γ\gamma is the anisotropy parameter and ss is the distance between CuO2_2 planes. With further decreasing BzB_z, the free energy of the crossing vortex lattice structure (PV and JV sublattices coexist separately) can exceed the free energy of the tilted lattice (common PV-JV vortex structure) in the case of γs<λab\gamma s<\lambda_{ab} with the in-plane penetration depth λab\lambda_{ab} if the low (Bx<γΦ0/λab2B_x<\gamma\Phi_0/\lambda_{ab}^2) or high (BxΦ0/γs2B_x\gtrsim \Phi_0/\gamma s^2) in-plane magnetic field is applied. It means that the crossing vortex structure is realized in the intermediate field orientations, while the tilted vortex lattice can exist if the magnetic field is aligned near the cc-axis and the abab-plane as well. In the intermediate in-plane fields γΦ0/λab2BxΦ0/γs2\gamma\Phi_0/\lambda_{ab}^2\lesssim B_x \lesssim \Phi_0/\gamma s^2, the crossing vortex structure with the ``trapped'' PV sublattice seems to settle in until the lock-in transition occurs since this structure has the lower energy with respect to the tilted vortex structure in the magnetic field H{\vec H} oriented near the abab-plane.Comment: 15 pages, 6 figures, accepted for publication in PR

    Justification of Filter Selection for Robot Balancing in Conditions of Limited Computational Resources

    Get PDF
    The paper considers the problem of mathematical filter selection, used for balancing of wheeled robot in conditions of limited computational resources. The solution based on complementary filter is proposed

    Possible new vortex matter phases in BSCCO

    Full text link
    The vortex matter phase diagram of BSCCO crystals is analyzed by investigating vortex penetration through the surface barrier in the presence of a transport current. The strength of the effective surface barrier, its nonlinearity, and asymmetry are used to identify a possible new ordered phase above the first-order transition. This technique also allows sensitive determination of the depinning temperature. The solid phase below the first-order transition is apparently subdivided into two phases by a vertical line extending from the multicritical point.Comment: 11 pages, 3 figures, accepted for publication in PR

    c-axis penetration depth in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals measured by ac-susceptibility and cavity perturbation technique

    Full text link
    The cc-axis penetration depth Δλc\Delta\lambda_c in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (BSCCO) single crystals as a function of temperature has been determined using two techniques, namely, measurements of the ac-susceptibility at a frequency of 100 kHz and the surface impedance at 9.4 GHz. Both techniques yield an almost linear function Δλc(T)T\Delta\lambda_c(T)\propto T in the temperature range T<0.5 T_c. Electrodynamic analysis of the impedance anisotropy has allowed us to estimate λc(0)50μ\lambda_c(0)\approx 50 \mum in BSCCO crystals overdoped with oxygen (Tc84T_c\approx 84 K) and λc(0)150μ\lambda_c(0)\approx 150 \mum at the optimal doping level (Tc90T_c\approx 90 K).Comment: 5 pages, 4 figure
    corecore