3,912 research outputs found

    On the equivalence between the cell-based smoothed finite element method and the virtual element method

    Get PDF
    We revisit the cell-based smoothed finite element method (SFEM) for quadrilateral elements and extend it to arbitrary polygons and polyhedrons in 2D and 3D, respectively. We highlight the similarity between the SFEM and the virtual element method (VEM). Based on the VEM, we propose a new stabilization approach to the SFEM when applied to arbitrary polygons and polyhedrons. The accuracy and the convergence properties of the SFEM are studied with a few benchmark problems in 2D and 3D linear elasticity. Later, the SFEM is combined with the scaled boundary finite element method to problems involving singularity within the framework of the linear elastic fracture mechanics in 2D

    Rotational Cooling of Polar Molecules by Stark-tuned Cavity Resonance

    Get PDF
    A general scheme for rotational cooling of diatomic heteronuclear molecules is proposed. It uses a superconducting microwave cavity to enhance the spontaneous decay via Purcell effect. Rotational cooling can be induced by sequentially tuning each rotational transition to cavity resonance, starting from the highest transition level to the lowest using an electric field. Electrostatic multipoles can be used to provide large confinement volume with essentially homogeneous background electric field.Comment: 10 pages, 6 figure

    Observation of Vortex Matching Phenomena in Antidot Array of NbN Thin Film

    Full text link
    We report vortex matching phenomenon in rectangular antidot array fabricated on epitaxial NbN thin film. The antidot array was fabricated using Focussed Ion Beam milling technique. The magneto-transport measurements points to a period doubling transition at higher magnetic field for rectangular lattices. The results are discussed within the light of several models including the multi-vortex model, the matched lattice model and the super-matched lattice model.Comment: Added references, modified abstract and discussions and corrected typo-graphic errors. Accepted for proceedings of M2S-IX 2009, Tokyo (Physica C

    A DEM study of silo discharge of a cohesive solid

    Get PDF
    Bulk handling of powders and granular solids is common in many industries and often gives rise to handling difficulties especially when the material exhibits complex cohesive behaviour. For example, high storage stresses in a silo can lead to high cohesive strength of the stored solid, which may in turn cause blockages such as ratholing or arching near the outlet during discharge. This paper presents a Discrete Element Method study of discharge of a granular solid with varying levels of cohesion from a flat-bottomed silo. The DEM simulations were conducted using the commercial EDEM code with a recently developed DEM contact model for cohesive solids implemented through an API. The contact model is based on an elasto-plastic contact with adhesion and uses hysteretic non-linear loading and unloading paths to model the elastic-plastic contact deformation. The adhesion parameter is a function of the maximum contact overlap. The model has been shown to be able to predict the stress history dependent behaviour depicted by a flow function of the material. The effects of cohesion on the discharge rate and flow pattern in the silo are investigated. The predicted discharge rates are compared for the varying levels of cohesion and the effect of adhesion is evaluated. The ability of the contact model to qualitatively predict the phenomena that are present in the discharge of a silo has been shown with the salient feature of mixed flow from a flat bottomed hopper identified in the simulation

    Partial rhombencephalosynapsis and Chiari II malformation

    Get PDF
    We report a rare case of partial rhombencephalosynapsis coexistent with Chiari II malformation in a 6-year-old girl and discuss the features of these entities on magnetic resonance imaging.published_or_final_versio

    Vortex matching effect in engineered thin films of NbN

    Full text link
    We report robust vortex matching effects in antidot arrays fabricated on thin films of NbN. The near absence of hysteresis between field sweep directions indicates a negligible residual pinning in the host thin film. Owing to the very small coherence length of NbN thin films (ξ<5nm\xi < 5 nm), the observations suggests the possibility of probing physics of vortices at true nanometer length scales in suitably fabricated structures.Comment: Submitted to Appl. Phys. Let

    Microcantilever Studies of Angular Field Dependence of Vortex Dynamics in BSCCO

    Full text link
    Using a nanogram-sized single crystal of BSCCO attached to a microcantilever we demonstrate in a direct way that in magnetic fields nearly parallel to the {\it ab} plane the magnetic field penetrates the sample in the form of Josephson vortices rather than in the form of a tilted vortex lattice. We further investigate the relation between the Josephson vortices and the pancake vortices generated by the perpendicular field component.Comment: 5 pages, 8 figure

    Determination of Meat Content in Processed Meats Using Currently Available Methods

    Get PDF
    Four methods were used in the determination of meat content in local meat and meat products. Current methods available are not reliable and applicable to routine monitoring and quality control by the regulating laboratories as well as the meat processing industry. A reliable and practical method is needed to monitor meat Introductions and ensure that they are meeting the minimum requirement of sixty five (65 %) percent meat content. The total pigments and hemoglobin technique was found to be applicable for determination of meat content in locally Inocessed beef burgers, when compared to the Modified Method of Stubbs & More (1919), and Pearson Method (1975
    corecore