8 research outputs found

    BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma

    No full text
    Background: Malignant peritoneal mesothelioma (PeM) is a rare and fatal cancer that originates from the peritoneal lining of the abdomen. Standard treatment of PeM is limited to cytoreductive surgery and/or chemotherapy, and no effective targeted therapies for PeM exist. Some immune checkpoint inhibitor studies of mesothelioma have found positivity to be associated with a worse prognosis. Methods: To search for novel therapeutic targets for PeM, we performed a comprehensive integrative multi-omics analysis of the genome, transcriptome, and proteome of 19 treatment-naïve PeM, and in particular, we examined BAP1 mutation and copy number status and its relationship to immune checkpoint inhibitor activation. Results: We found that PeM could be divided into tumors with an inflammatory tumor microenvironment and those without and that this distinction correlated with haploinsufficiency of BAP1. To further investigate the role of BAP1, we used our recently developed cancer driver gene prioritization algorithm, HIT’nDRIVE, and observed that PeM with BAP1 haploinsufficiency form a distinct molecular subtype characterized by distinct gene expression patterns of chromatin remodeling, DNA repair pathways, and immune checkpoint receptor activation. We demonstrate that this subtype is correlated with an inflammatory tumor microenvironment and thus is a candidate for immune checkpoint blockade therapies. Conclusions: Our findings reveal BAP1 to be a potential, easily trackable prognostic and predictive biomarker for PeM immunotherapy that refines PeM disease classification. BAP1 stratification may improve drug response rates in ongoing phases I and II clinical trials exploring the use of immune checkpoint blockade therapies in PeM in which BAP1 status is not considered. This integrated molecular characterization provides a comprehensive foundation for improved management of a subset of PeM patients.Medicine, Faculty ofOther UBCNon UBCSurgery, Department ofUrologic Sciences, Department ofReviewedFacult

    Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    No full text
    SummaryPlasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification

    Health and Human Rights in Eastern Myanmar after the Political Transition: A Population-Based Assessment Using Multistaged Household Cluster Sampling

    No full text
    Myanmar transitioned to a nominally civilian parliamentary government in March 2011. Qualitative reports suggest that exposure to violence and displacement has declined while international assistance for health services has increased. An assessment of the impact of these changes on the health and human rights situation has not been published.Five community-based organizations conducted household surveys using two-stage cluster sampling in five states in eastern Myanmar from July 2013-September 2013. Data was collected from 6, 178 households on demographics, mortality, health outcomes, water and sanitation, food security and nutrition, malaria, and human rights violations (HRV). Among children aged 6-59 months screened, the prevalence of global acute malnutrition (representing moderate or severe malnutrition) was 11.3% (8.0-14.7). A total of 250 deaths occurred during the year prior to the survey. Infant deaths accounted for 64 of these (IMR 94.2; 95% CI 66.5-133.5) and there were 94 child deaths (U5MR 141.9; 95% CI 94.8-189.0). 10.7% of households (95% CI 7.0-14.5) experienced at least one HRV in the past year, while four percent reported 2 or more HRVs. Household exposure to one or more HRVs was associated with moderate-severe malnutrition among children (14.9 vs. 6.8%; prevalence ratio 2.2, 95% CI 1.2-4.2). Household exposure to HRVs was associated with self-reported fair or poor health status among respondents (PR 1.3; 95% CI 1.1-1.5).This large survey of health and human rights demonstrates that two years after political transition, vulnerable populations of eastern Myanmar are less likely to experience human rights violations compared to previous surveys. However, access to health services remains constrained, and risk of disease and death remains higher than the country as a whole. Efforts to address these poor health indicators should prioritize support for populations that remain outside the scope of most formal government and donor programs

    Evasion of immunosurveillance by genomic alterations of PPARγ/RXRα in bladder cancer.

    Get PDF
    Muscle-invasive bladder cancer (MIBC) is an aggressive disease with limited therapeutic options. Although immunotherapies are approved for MIBC, the majority of patients fail to respond, suggesting existence of complementary immune evasion mechanisms. Here, we report that the PPARγ/RXRα pathway constitutes a tumor-intrinsic mechanism underlying immune evasion in MIBC. Recurrent mutations in RXRα at serine 427 (S427F/Y), through conformational activation of the PPARγ/RXRα heterodimer, and focal amplification/overexpression of PPARγ converge to modulate PPARγ/RXRα-dependent transcription programs. Immune cell-infiltration is controlled by activated PPARγ/RXRα that inhibits expression/secretion of inflammatory cytokines. Clinical data sets and an in vivo tumor model indicate that PPARγHigh/RXRαS427F/Y impairs CD8+ T-cell infiltration and confers partial resistance to immunotherapies. Knockdown of PPARγ or RXRα and pharmacological inhibition of PPARγ significantly increase cytokine expression suggesting therapeutic approaches to reviving immunosurveillance and sensitivity to immunotherapies. Our study reveals a class of tumor cell-intrinsic "immuno-oncogenes" that modulate the immune microenvironment of cancer.Muscle-invasive bladder cancer (MIBC) is a potentially lethal disease. Here the authors characterize diverse genetic alterations in MIBC that convergently lead to constitutive activation of PPARgamma/RXRalpha and result in immunosurveillance escape by inhibiting CD8+ T-cell recruitment

    Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma.

    No full text
    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study (GWAS) followed by replication in a combined total of 10,503 PACG cases and 29,567 controls drawn from 24 countries across Asia, Australia, Europe, North America, and South America. We observed significant evidence of disease association at five new genetic loci upon meta-analysis of all patient collections. These loci are at EPDR1 rs3816415 (odds ratio (OR) = 1.24, P = 5.94 × 10(-15)), CHAT rs1258267 (OR = 1.22, P = 2.85 × 10(-16)), GLIS3 rs736893 (OR = 1.18, P = 1.43 × 10(-14)), FERMT2 rs7494379 (OR = 1.14, P = 3.43 × 10(-11)), and DPM2-FAM102A rs3739821 (OR = 1.15, P = 8.32 × 10(-12)). We also confirmed significant association at three previously described loci (P < 5 × 10(-8) for each sentinel SNP at PLEKHA7, COL11A1, and PCMTD1-ST18), providing new insights into the biology of PACG

    Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma

    No full text
    corecore