116 research outputs found

    iPACOSE: an iterative algorithm for the estimation of gene regulation networks

    Get PDF
    In the context of Gaussian Graphical Models (GGMs) with high- dimensional small sample data, we present a simple procedure to esti- mate partial correlations under the constraint that some of them are strictly zero. This method can also be extended to covariance selection. If the goal is to estimate a GGM, our new procedure can be applied to re-estimate the partial correlations after a first graph has been esti- mated in the hope to improve the estimation of non-zero coefficients. In a simulation study, we compare our new covariance selection procedure to existing methods and show that the re-estimated partial correlation coefficients may be closer to the real values in important cases

    Efficient Distributed Estimation of Inverse Covariance Matrices

    Full text link
    In distributed systems, communication is a major concern due to issues such as its vulnerability or efficiency. In this paper, we are interested in estimating sparse inverse covariance matrices when samples are distributed into different machines. We address communication efficiency by proposing a method where, in a single round of communication, each machine transfers a small subset of the entries of the inverse covariance matrix. We show that, with this efficient distributed method, the error rates can be comparable with estimation in a non-distributed setting, and correct model selection is still possible. Practical performance is shown through simulations

    Learning to learn graph topologies

    Get PDF
    Learning a graph topology to reveal the underlying relationship between data entities plays an important role in various machine learning and data analysis tasks. Under the assumption that structured data vary smoothly over a graph, the problem can be formulated as a regularised convex optimisation over a positive semidefinite cone and solved by iterative algorithms. Classic methods require an explicit convex function to reflect generic topological priors, e.g. the â„“1 penalty for enforcing sparsity, which limits the flexibility and expressiveness in learning rich topological structures. We propose to learn a mapping from node data to the graph structure based on the idea of learning to optimise (L2O). Specifically, our model first unrolls an iterative primal-dual splitting algorithm into a neural network. The key structural proximal projection is replaced with a variational autoencoder that refines the estimated graph with enhanced topological properties. The model is trained in an end-to-end fashion with pairs of node data and graph samples. Experiments on both synthetic and real-world data demonstrate that our model is more efficient than classic iterative algorithms in learning a graph with specific topological properties

    Network inference in matrix-variate Gaussian models with non-independent noise

    Full text link
    Inferring a graphical model or network from observational data from a large number of variables is a well studied problem in machine learning and computational statistics. In this paper we consider a version of this problem that is relevant to the analysis of multiple phenotypes collected in genetic studies. In such datasets we expect correlations between phenotypes and between individuals. We model observations as a sum of two matrix normal variates such that the joint covariance function is a sum of Kronecker products. This model, which generalizes the Graphical Lasso, assumes observations are correlated due to known genetic relationships and corrupted with non-independent noise. We have developed a computationally efficient EM algorithm to fit this model. On simulated datasets we illustrate substantially improved performance in network reconstruction by allowing for a general noise distribution
    • …
    corecore