
Vincent Guillemot, Andreas Bender, Anne-Laure Boulesteix

iPACOSE: an iterative algorithm for the estimation of gene
regulation networks

Technical Report Number 133, 2012
Department of Statistics
University of Munich

http://www.stat.uni-muenchen.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12174531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.stat.uni-muenchen.de/


iPACOSE: a new algorithm for the estimation of

gene regulation networks

Vincent Guillemot(1) Andreas Bender(1)

Anne-Laure Boulesteix(1) ∗

1 Department of Medical Informatics, Biometry and Epidemiology, University

of Munich, Marchioninistr. 15, 81377 Munich, Germany

Abstract

In the context of Gaussian Graphical Models (GGMs) with high-

dimensional small sample data, we present a simple procedure to esti-

mate partial correlations under the constraint that some of them are

strictly zero. This method can also be extended to covariance selection.

If the goal is to estimate a GGM, our new procedure can be applied

to re-estimate the partial correlations after a first graph has been esti-

mated in the hope to improve the estimation of non-zero coefficients. In

a simulation study, we compare our new covariance selection procedure

to existing methods and show that the re-estimated partial correlation

coefficients may be closer to the real values in important cases.

1 Introduction

The robust estimation of the inverse covariance matrix is crucial in many

multivariate statistical methods such as discriminant analysis or linear re-

gression [22]. Many variants of these multivariate methods aim at somehow

“regularizing” the estimation of the covariance matrix to make it invert-

ible or better conditioned, for example ridge regression (RR), diagonal dis-

criminant analysis or regularized discriminant analysis [6]. A large body

of literature is devoted to the estimation of the inverse covariance matrix

in high-dimensional small sample settings, i.e. when the number of obser-

vations n is much smaller than the number of variables p. A well-known
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example is the shrinkage estimator by [12] which is defined as a weighted

sum of the sample covariance matrix and a fixed (invertible) target matrix.

This method can be considered as “agnostic” in the sense that it estimates

the covariance matrix in a completely data-driven way, i.e. without prior

knowledge.

In this article, we first propose a method that directly estimates the

partial correlation matrix while taking into account prior information of the

dependencies between variables materialized by a given undirected graph.

In a nutshell, our new method takes such a graph – called “independence

graph” – as input and estimates the non-zero coefficients of the partial cor-

relation matrix by ridge regression using the regression-based definition of

partial correlations. The inverse covariance matrix can then be simply ob-

tained from the partial correlation matrix by incorporating estimates of the

variances. In this sense, our method can be seen as a covariance selection

algorithm [3]. Although many covariance selection methods have been pro-

posed in the literature (see Section 2 for details), none of these methods

is designed to estimate the inverse covariance matrix in high-dimensional

settings while incorporating a non-decomposable independence graph.

Furthermore, we suggest a new iterative algorithm called “PACOSE” -

standing for PArtial COrrelation SElection - that estimates an independence

graph from a data set using our new partial correlation estimate in a recur-

sive way. Briefly, PACOSE takes as an input a data set and a significance

level for the partial correlation and gives as an output an estimated indepen-

dence graph. We show on simulated datasets that the fact that the partial

correlation coefficients are re-estimated recursively yields graphs closer to

the real one than a simple thresholding of an estimated partial correlation

matrix.

The rest of the paper is structured as follows. Section 2 presents our

iterative method and the associated covariance selection and also briefly

reviews existing covariance selection methods. In Section 3, we compare

our new method to existing GRNs estimation algorithms on simulated data.

Finally, we present in section 4 some results obtained on real datasets.
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2 Methods

2.1 Introduction

The estimation of Gene Regulation Networks (GRNs) is a burning issue

in bioinformatics. Gaussian Graphical Models (GGMs) have been widely

used for this purpose in the last few years GRNs can indeed provide the

biologists with new candidates for interactions between a set of given genes

through the analysis of now widely available gene expression microarray

data. Unfortunately, the very property of the microarray data that makes

them attractive for this task, which is the high number of genes present

on such supports, is what makes the task of estimating GRNs statistically

challenging: the number of individuals (n) is always very low compared to

the number of variables (p). It is then mandatory to adopt regularization

strategies to cope with this n� p situation when estimating GGMs.

The method we propose achieves the estimation of a graph through the

use of a regularized partial correlation matrix estimation. We call this new

method “(PACOSE)”, standing for PArtial COrrelation SElection. It is

able to estimate a partial correlation matrix under the constraint that some

given coefficients are equal to 0. The term “Selection” refers to covariance

selection algorithms. They are themselves defined as methods to:

• Estimate the covariance and/or the precision matrix matrix knowing

that some given coefficients are null in the precision matrix [3];

• Estimate the covariance matrix knowing that there is a certain amount

of zeros in the precision matrix [2, 11].

To avoid any confusion with these sensibly different definitions, we chose an

acronym closely related to the parameters that we want to estimate: the

partial correlations.

Briefly, PACOSE is an iterative algorithm based on the subsequent ap-

plication of a threshold to an estimated partial correlation matrix knowing

a pattern of zeros. It is synthesized in Figure 1 and further detailed in part

2.7.

2.2 Partial correlation and Gaussian Graphical Models

This section briefly reviews the basics of GGM theory used in this paper.

Let X denote a p-variate random vector X = (X1, . . . , Xp)
> such that the
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variables X1, . . . , Xp all have a mean and a variance. G denotes the graph

describing the conditional independencies between the p variables: G is thus

an undirected graph with p nodes. The covariance matrix of X, denoted by

Σ, is supposed to be invertible. Its inverse Ω = Σ−1 is from now on referred

to as the precision matrix.

The partial correlation coefficient ρij of Xi and Xj given all the other

variables {X1, . . . , Xp} \ {Xi, Xj} can be estimated as

ρ̂ij =
ĉov

(
Xi − X̂i, Xj − X̂j

)

√
v̂ar

(
Xi − X̂i

)
v̂ar

(
Xj − X̂j

) , (1)

where ĉov and v̂ar denote the empirical covariance and variance, respec-

tively, and X̂i stands for the fitted value of Xi in a linear regression model

including all variables except Xi and Xj as covariates. In a word ρ̂ij is the

correlation of the residuals of the linear models regressing Xi against all

variables except Xj and vice-versa.

Another method to compute ρ̂ij based on linear regressions results from

the following property [20]:

ρ̂ij = sign(β̂ij)

√
β̂ij β̂ji, (2)

where β̂ij is the estimated coefficient of variable Xj in the linear model

regressing Xi against all the other variables. Note that both formulations

(1) and (2) implicitly assume that the considered linear regression models

can be estimated, which is for instance not the case in high-dimensional

data with n < p. This issue will be discussed later. Moreover, it can also

be shown [20] that the partial correlation coefficient ρij is related to the

precision matrix Ω = [ωij ] = Σ−1 as follows:

ρij = − ωij√
ωii
√
ωjj

, for i 6= j. (3)

If X1, . . . , Xp are Gaussian, the following important property can be shown

for i, j, k ∈ {1, . . . , p} (k 6= i, j), see for instance [21]:

Xi ⊥⊥ Xj |Xk ⇔ ρij = 0, (4)
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which means that two variables are conditionally independent if and only if

their partial correlation equals zero.

The formulation (2) is exploited by numerous methods to estimate gene

regulatory networks from high-dimensional microarray gene expression data

[7, 10, 15]. Note, however, that these data often have much more variables

(genes) than observations (arrays), hence the term “n � p data”. A reg-

ularized regression technique has then to be used to estimate βij and βji,

since least squares regression cannot be performed with n < p data. An-

other popular approach [12] to estimate GGMs from high-dimensional data

consists in applying Eq. (3) using a regularized (invertible) estimator of Σ .

All these methods yield an estimate of the partial correlation matrix.

Some methods are essentially sparse, i.e. yield a matrix with many zeros

[7]. In this case, the graph is simply derived from the partial correlation

matrix by connecting pairs of variables with non-zero partial correlations.

For other methods [12, 10], however, a threshold has to be applied to decide

which variables have to be connected. We further discuss this aspect in

section 2.6.

2.3 Correlation and covariance selection

The concepts briefly reviewed in the above section are important for un-

derstanding our novel method, whose main idea is to combine formulation

(2) along with the information given in an a priori independence graph G
between the variables. In a nutshell, this is done by setting βij and βji to 0 if

Xi and Xj are not connected in the graph. It immediately results from Eq.

(2) that ρ̂ij = 0. Other partial correlation coefficients ρik or ρjk involving

Xi or Xj are also affected by the constraint βij = βij = 0, which essentially

removes one covariate in the considered linear regression models.

More precisely, our graph-constrained estimator of the partial correlation

between Xi and Xj is given as

ρ̂Gij = sign(β̂Gij)
√
β̂Gij β̂

G
ji, (5)

where

* β̂Gij = 0 if Xi and Xj are not connected in G,

* β̂Gij is the estimated regression coefficient of Xj in the regression of Xi
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against its connected variables otherwise, i.e. the coefficient β̂Gij in the

model

Xi = βGi0 +
∑

k: k∼i
βGikXk + εi. (6)

This definition implicitly assumes that the estimates of the regression coef-

ficients exist, which may not be the case in high-dimensional settings. This

problem is addressed in the next section.

2.4 High dimensional settings

When the number of variables connected to i is greater than the number

of observations, the estimation of the coefficients of the linear regression

model (6) cannot be performed by ordinary least squares. Unfortunately,

it is likely to sometimes occur in practical analyses with high-dimensional

data. That is why we suggest to replace least squares regression by one of its

its regularized versions: ridge regression [9], PLS regression [23, 24], Lasso

[16] or adaptive Lasso [25]. Here we focus on Ridge Regression which can

be seen as the standard regularized regression approach. The regularization

parameters are estimated by k-fold cross-validation (CV).

The estimated partial correlation coefficients are then given as:

ρ̂Gij = sign(β̂G,RRij )
√
β̂G,RRij β̂G,RRji , (7)

where β̂G,RRij is the regression coefficient of variableXj in the ridge regression

model regressing Xi against all the other variables, where the penalty is

optimized by CV.

Once the partial correlation coefficients are estimated, an estimator of

the precision matrix Ω = Σ−1 is obtained via the following procedure:

1. compute for each variable its partial variance with respect to the other

variables,

2. use the relation between the precision matrix, the partial covariance

matrix and the partial variances, build the precision matrix estimate

as

ρij =
−ωij√
ωii
√
ωjj
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According to [20], the partial correlation coefficient are linked to the

coefficients of the precision matrix ωij = [Ω]ij through Eq. (3). All the

methods from the literature allow to compute directly the precision matrix,

we then use equivalence (2) to compare them to our method based on the

ridge regression. With this algorithm it is then possible to estimate a partial

correlation matrix and a precision matrix.

2.5 Competing approaches

To our knowledge, there is no method in the literature allowing to compute

directly the partial correlation matrix with the knowledge of an undirected

graph. But there are numerous methods dedicated to the estimation of

the inverse covariance matrix knowing a given graph. The literature refers

to these methods as covariance selection algorithms. These algorithms are

usually used to estimate the covariance matrix, but they can also be used

to estimate the precision matrix.

A first method could be to estimate the precision matrix with a shrinkage

algorithm [12] and then to set to 0 all the coefficients corresponding to the

non connected variables in the given graph:

Ω̂ = (S + λI)−1 .

To take into account the given graph, all the coefficients Ω̂ij such that i � j

are set to 0.

When the graph is decomposable:

• if it is completely connected, the maximum likelihood estimate for the

precision matrix is simply Ω̂ = S−1.

• otherwise, the maximum likelihood estimate of the precision matrix is

a linear combination of block matrices:

Ω̂(G) =
∑

Ci
n
[
S−1Ci

]0
−
∑

Sj
n
[
S−1Sj

]0
,

However, the previous estimator’s variance is outperformed by the vari-

ance of the estimators presented by Wiesel [21]: given a decomposition of

the graph G into cliques Ci and separators Sj , then the proposed biased
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estimator is

Ω̂Wi(G) =
∑

Ci
(n− ci − 1− d)

[
S−1Ci

]0
−
∑

Sj
(n− sj − 1− d)

[
S−1Sj

]0
,

with d = −2tr(∇D)/D and D =
∑
Ci S

−1
Ci −

∑
Sj S

−1
Sj .

Nevertheless, the methods presented in [21] are not able to cope with

a non decomposable graph. This is a major drawback because most of the

graphs we deal with in bioinformatics are not decomposable. Hence, one

needs to turn to iterative methods ([19] or [20]) or methods based on the

optimization of a criterion independent from the nature of the graph, such

as the method glasso [7].

The iterative algorithm presented in [19] is based on the fact that if

one coefficient only has to be null in the precision matrix, then there is

an equivalence between the empirical covariance matrix, its inverse and the

other coefficients. The algorithm consists in iterating on the coefficients

supposed to be zero until they all reach an acceptable level defined by the

user. This estimator will be denoted Ω̂We(G).

The iterative algorithm presented in [20] (p. 182) is based on an iterative

proportional fitting algorithm [13]. It consists, for each clique a of the graph,

to replace at iteration n+ 1 Kn+1
a,a by

S−1a,a +Bn
b|aK

n
a,a(Bn

b|a)>,

with Bn
b|a = covn(Xb, Xa)varn(Xa)−1. The resulting estimator of the preci-

sion matrix is then the limit of the iterative process : Ω̂Wh(G) = limnK
n.

Finally, the method glasso [7] allows to compute an estimate of the

precision matrix Ω̂Gl(G). It has to be noted that the version of the method

used to take into account depends on a regularization parameter. Since we

do not have a suitable method to determine it in a proper way, we decided

to set it to 0.

2.6 Thresholding the partial correlation matrix

Regardless the method used to estimate a partial correlation matrix, whether

a graph is also used in the process or not, the user may want to know which

coefficients are significant and which are not. The goal could be to transform

a partial correlation matrix, e.g. estimated thanks to the method of Sch?fer

8



et al. [12], into a graph. Since for such an application a certain value of par-

tial correlation is determined above which the partial correlation coefficients

are considered significant, we will refer to this value as the “threshold”.

Many methods are available to determine a suitable threshold. The first

step is to apply to the partial correlation coefficients an inverse hyperbolic

tangent transform, also known as Fisher’s transformation [5], and compute

a p-value by considering the obtained values as normally distributed. Then,

the p-values are corrected for multiple tests with

1. the local-fdr strategy, this is the strategy adopted for example in [10],

2. the FNDR controlling strategy [14].

Finally, the threshold is the minimum value for which the p-values are con-

sidered significant. We choose the last of the previous strategies to deter-

mine a suitable threshold and use the functions implemented in the library

fdrtool [14].

2.7 PACOSE

In a nutshell, our algorithm PACOSE operates as follows:

1. Estimate a first version of the partial correlation matrix with an already

existing method (for example pcor.shrink or ridge.net or pls.net or

adalasso.net or lasso.net).

2. Define on this matrix a threshold that allows transforming the partial cor-

relation matrix into a graph that can be used in PACOSE; this threshold

is then fixed once and for all.

3. Apply a partial correlation selection to the dataset with the previously

defined graph in order to estimate a new partial correlation matrix.

4. Apply the threshold defined in 2 to the partial correlation matrix esti-

mated with partial correlation selection to define a new version of the

graph.

5. Iterate steps 3 and 4 until the graph in 4 is the same as the graph in 3.

We experimentally verified that it is not satisfactory to set a new thresh-

old for each new iteration: it leads to far too sparse graphs.
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3 Results on simulated data

We address three different issues in this section:

(a) the estimation of the partial correlation matrix and the precision matrix

knowing a certain undirected graph,

(b) the evaluation of PACOSE’s performance.

When one want to simulate data knowing a given graph of indepen-

dence, there is the possibility to use the characteristic given by the theory

of Gaussian Graphical Models. To this constraint is added the fact that

the randomly generated precision matrix has to be positive definite. One

could see this problem as a so-called “positive definite completion matrix”

issue [8]. But the work on this specific issue is once again mainly focused on

decomposable graph. We decided to adopt a more empirical method, which

in practice gives a very satisfying range of partial correlation coefficients,

and at the end of the algorithm, the respect of constraint (4).

We used simulated data to compare our method to the methods pre-

sented in the literature. Erdős-Rényi’s graphs [4] were used to model the

interactions between genes, which allows loops, hubs, and multiple connected

components. We used the following algorithm:

(i) Compute a first random Erdős-Rényi [4] or Barabasi [1] graph G(0),
with adjacency matrix ,

(ii) Get the “upper triangular” adjacency matrix A(0) of this graph and

replace any non null coefficient by a random realization of a uniform

variable (e.g. U(] − 1,−0.8] ∪ [0.8, 1[), but any interval is possible),

which then allows to define an upper triangular weight matrix W (0),

(iii) compute then the following matrix M = (W (0)+I)>(W (0)+I), where

I is the identity matrix, defining a new graph G slightly different

from the initial graph, but above all defining a sparse positive definite

matrix M ,

(iv) Normalize this matrix to get a partial correlation matrix Π = M?,

(v) generate a multivariate Gaussian random variables X ∼ N (0,Σ =

Ω−1).
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We prefer this algorithm to for example the algorithm presented in [18]

(the same as the one presented in [10]) because the latter produces partial

correlation coefficients often very close to 0 when p is greater than a few

dozens. The drawback of this method is that it alters the degree structure

of the initial structure - in a drastic way for Erdős-Rényi graph, and in a

very moderate way for Barabasi’s graph.

The covariance selection algorithm presented in [19] were implemented in

R and C by ourselves, so were the algorithms presented in [21]. Whittaker’s

method [20] is implemented in the R package ggm, and Friedman’s et al

method [7] in the package glasso.

3.1 Estimation of the partial correlation matrix

The presented estimator has interesting mean square errors compared to the

other estimators, as figure 3.1 shows it on an example. The function :

MSE(Ω̂) =
1

N

∑

ij

(Ω̂ij − Ωij)
2,

MSE(Π̂) =
1

N

∑

ij

(Π̂ij −Πij)
2,

with N = p(p− 1)/2.

This is when the setting is favorable (much more variables than individ-

uals). When the setting is less favorable, the results show a better perfor-

mance of our estimator, both in stability and accuracy, see figure 3.1.

3.2 PACOSE results

PACOSE was applied to simulated datasets in order to recover the under-

lying partial independence graphs.

To compare the estimated graphs with the real graph, we used the pos-

itive predictive value (ppv) and the sensibility (sen):

ppv =
TP

TP + FP
and sen =

TP

TP + FN
,

where TP , FP and FN are defined in table 1

Biological networks are indeed often described as sparse, and indicators

based on the number of edges are more suitable in this case [17].
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i ∼ j i � j

ρ̂ij 6= 0 TP FP
ρ̂ij = 0 FN TN

Table 1: The definitions of true and false positives (resp. TP and FP), true
and false negatives (resp. TN and FN) in the context of graph inference.

On Figures 3.2 and 3.2 are represented the sensibility and the ppv of the

estimated graphs as a function of the threshold. PACOSE clearly outper-

forms the classical graph estimation strategies based on partial correlation.

4 Conclusion

We present in this paper a new straightforward way of integrating a network

in the estimation of a partial correlation matrix. It constitutes the basis of

our new iterative algorithm for the estimation of Gaussian Graphical Models.
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